Volume 2, Number 4—October 1996
Synopsis
Molecular Mechanisms of Bacterial Virulence: Type III Secretion and Pathogenicity Islands
Table 1
Yersinia (p)b | S. typhimurium |
S. flexneri (p) | EPEC (c) | Flagellac (c) | Plantd (c) | Possible Functiond | Possible Cellular Locationf | Reference | |
---|---|---|---|---|---|---|---|---|---|
SPI I(c) | SPI II(c) | ||||||||
YscN | SpaL | orf1 | MxiB | SepB | FliI | HrpE | ATPase | cytoplasm, associated with inner membrane (I.M.) | 8, 43, 63 |
LcrD | InvA | orf9 | MxiA | SepA | FlhA | HrpO | structural/ regulatory | I.M. | 28, 43, 63 |
YscR | SpaP | orf5 | Spa24 | FliP | HrpT | structural | I.M. | 8, 43 | |
YscS | SpaQ | orf6 | Spa9 | FliQ | HrpU | “ | “ | 28, 43 | |
YscT | SpaR | orf7 | Spa40 | FliR | HrpC | “ | “ | 8, 43 | |
YscU | SpaS | orf8 | Spa40 | FhlB | HrpN | “ | “ | 8, 43, 63 | |
YscC | InvG | orf11 | MxiD | SepC | HrpA | structural/channel forming | outer membrane (O.M.) | 28, 43, 63 | |
YscJ | PrgK | orf10 | MxiJ | SepD | FliF | HrpI | lipoprotein/ structural | O.M. | 8, 28, 43, 63 |
VirG | “ | “ | 52 | ||||||
YscD | essential, but unknown | I.M. | 48 | ||||||
YscE | “ | unknown | 51 | ||||||
YscF | PrgI | MxiH | needed for YopB and D secretion | “ | 28, 51 | ||||
YscG | essential, butunknown | equally distributed between membrane and soluble fractions | 48 | ||||||
YscI | “ | unknown | 51 | ||||||
YscK | “ | “ | 51 | ||||||
YscL | HrpF | “ | “ | 8 | |||||
YscO | SpaM | orf2 | Spa13 | unknown | “ | 12, 28, 43 | |||
YscP | SpaN | orf3 | Spa32 | “ | “ | 12, 28, 43 | |||
YscQ | SpaO | orf4 | Spa33 | FliN | HrpQ | SpaO needed for secretion of Sips (see below) | Spa O: secreted | 8, 28, 43 | |
YopB | SipB | IpaB | homology to pore forming toxins/delivery of effector moleculesto host cells | secreted/targeted to host cell | 26, 28, 55 | ||||
YopD | delivery of effector molecules to host cells | secreted | 55 | ||||||
SipD | IpaD | “ | secreted | 26 | |||||
SycD | SicA | IpgC | chaperone for YopB and D/ IpaB and IpaC in Shigella | cytoplasm | 56 | ||||
SycE | chaperone for YopE | “ | 56 | ||||||
SycH | chaperone for YopH | “ | 56 | ||||||
YopN | InvE | MxiC | regulatory: cell-contact sensing pathway | O.M./secreted | 28 | ||||
LcrG | “ | cytosol/I.M. | 59, S. Straley pers. comm. | ||||||
LcrQ | regulatory | cytoplasm/secreted | 54 | ||||||
VirF | InvF | MxiE | HrpB | regulatory:temperature | cytoplasm | 28 | |||
YopE | effector molecule:depolymerizes actin antiphagocytic | host cell | 27 | ||||||
YopH | effector molecule: tyrosine phosphatase anti-phagocytic | “ | 36 | ||||||
SipC | IpaC | effector molecule: induces entry into epithelial cells | secreted | 17, 28 | |||||
EspB (EaeB) | effector molecule: induces AE lesions | 33, 63 |
aListed are names of proteins in type III secretion systems
bp-proteins are encoded by genes on a plasmid; c-proteins are encoded by genes on the chromosome.
cProtein names are those from the S. Typhimurium flagella; for list of flagellar protein names from other bacteria, see ref. 23.
dProtein names are those from the plant pathogen Pseudomonas solanacearum; for a list of components of type III secretion systems in other plant pathogens, see ref. 8.
eThese are the possible functions for these factors in Yersinia, unless noted.
fThese are the possible locations for these factors in Yersinia, unless noted.
References
- Finlay BB, Falkow S. Common themes in microbial pathogenicity. Microbiol Rev. 1989;53:210–30.PubMedGoogle Scholar
- Hayes W. The Genetics of Bacteria and their Virues. In: 2nd ed. 1968, New York: John Wiley & Sons Inc.
- Knapp S, Hacker J, Jarchau T,Goebel W. Large, unstable inserts in the chromosome affect virulence properties of uropathogenic Escherichia coli O6 strain 536. J Bacteriol. 1986;168:22–30.PubMedGoogle Scholar
- Hacker J, Bender L, Ott M, Wingender J, Lund B, Marre R, Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog. 1990;8:2213–25. DOIGoogle Scholar
- Fenselau S, Balbo I, Bonus U. Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacteria pathogens of animals. Mol Plant Microbe Interact. 1992;5:390–6.PubMedGoogle Scholar
- Sasakawa C, Komatsu K, Tobe T, Fukuda I, Suzuki T, Yoshikawa M. Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri. J Bacteriol. 1993;175:2334–46.PubMedGoogle Scholar
- Groisman EA, Ochman H. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 1993;12:3779–87.PubMedGoogle Scholar
- van Gijsegem F, Gough C, Zischek C, Niqueux E, Arlat M, Genin S, . The hrp gene locus of Pseudomonas solanacearum, which controls the production of type III secretion system, encodes eight proteins related to components of bacterial flagellar biogenesis complex. Mol Microbiol. 1995;15:1095–114. DOIPubMedGoogle Scholar
- Michiels T, Vanooteghem J-C, de Rouvroit C, China B, Gustin A, Boudry P, . Analysis of virC, an operon involved in secretion of Yop proteins by Yersinia enterocolitica. J Bacteriol. 1991;173:4994–5009.PubMedGoogle Scholar
- Plano GV, Barve SS, Straley SC. LcrD, a membrane-bound regulator of the Yersinia pestis low-calcium response. J Bacteriol. 1991;173:7293–303.PubMedGoogle Scholar
- Haddix PL, Straley SC. Structure and regulation of the c Yersinia pestis yscBCDEF operon. J Bacteriol. 1992;174:4820–8.PubMedGoogle Scholar
- Bergman T, Erickson K, Galyov E, Persson C, Wolf-Watz H. The lcrB (yscN/U) gene cluster of Yersinia pseudotuberculosis is involved in Yop secretion and shows high homology to the spa gene clusters of Shigella flexeri and Salmonella typhimurium. J Bacteriol. 1994;176:2619–26.PubMedGoogle Scholar
- Michiels T, Wattiau P, Brasseur R, Ruysschaert J-M,Cornelis GR. Secretion of Yop proteins by Yersiniae. Infect Immun. 1990;58:2840–9.PubMedGoogle Scholar
- Salmond GPC, Reeves PJ. Membrane traffic wardens and protein secretion in Gram-negative bacteria. Trends Biochem Sci. 1993;18:7–12. DOIPubMedGoogle Scholar
- Rosqvist R, Forsberg Å, Wolf-Watz H. Intracellular targetting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun. 1991;59:4562–9.PubMedGoogle Scholar
- Rosqvist R, Forsberg Å, Rimpiläinen M, Bergman T, Wolf-Watz H. The cytotoxic protein YopE of Yersinia obstructs the primary host defense. Mol Microbiol. 1990;4:657–67. DOIPubMedGoogle Scholar
- Ménard R, Prévost M-CGP, Sansonetti P, Dehio C. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc Natl Acad Sci U S A. 1996;93:1254–8. DOIPubMedGoogle Scholar
- Ginocchio CC, Olmsted SB, Wells CL, Galán JE. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell. 1994;76:717–24. DOIPubMedGoogle Scholar
- Watarai M, Tobe T, Yoshikawa M, Sasakawa C. Contact of Shigella with host cells triggers release of Ipa invasins and is an essential function of invasiveness. EMBO J. 1995;14:2461–70.PubMedGoogle Scholar
- Pugsley AP. The complete general secretory pathway. Microbiol Rev. 1993;57:50–108.PubMedGoogle Scholar
- Fath MJ, Kolter R. ABC transporters: bacterial exporters. Microbiol Rev. 1993;57:997–1017.
- Stephens C, Shapiro L. Targetted protein secretion in bacterial pathogenesis. Curr Biol. 1996;6:927–30. DOIPubMedGoogle Scholar
- Aizawa S-I. Flagellar assembly in Salmonella typhimurium. Mol Microbiol. 1996;19:1–5. DOIPubMedGoogle Scholar
- Harshey RM, Toguchi A. Spinning tails: homologies among bacterial flagellar systems. Trends Microbiol. 1996;4:226–31. DOIPubMedGoogle Scholar
- Kaniga K, Bossio JC, Galán JE. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol Microbiol. 1994;13:555–68. DOIPubMedGoogle Scholar
- Ménard R, Sansonetti PJ, Parsot C. The secretion of the Shigella flexneri Ipa invasins is induced by the epithelial cell and controlled by IpaB and IpaD. EMBO J. 1994;13:5293–302.PubMedGoogle Scholar
- Rosqvist R, Magnusson K, Wolf-Watz H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 1994;13:964–72.PubMedGoogle Scholar
- Galán JE. Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol. 1996;20:263–71. DOIPubMedGoogle Scholar
- Straley SC, Perry RD. Environmental modulation of the gene expression and pathogenesis in Yersinia. Trends Microbiol. 1995;3:310–7. DOIPubMedGoogle Scholar
- Lee C, Falkow S. The ability of Salmonella to enter mammalian cells is affected by bacterial growth states. Proc Natl Acad Sci U S A. 1990;89:1847–51. DOIGoogle Scholar
- Hromockyj AE, Tucker SC, Maurelli AT. Temperature regulation of Shigella virulence: identification of the repressor gene virR, an analogue of hns, and partial complementation by tyrosyl transfer RNA. Mol Microbiol. 1992;6:2113–24. DOIPubMedGoogle Scholar
- Pettersson J, Nordfelth R, Dubrinina E, Bergaman T, Gustfsson M, Magnusson KE, Modulation of the virulence factor expression by pathogen target cell contact. Science. 1996;273:1231–3. DOIPubMedGoogle Scholar
- Kenny B, Lai L-C, Finlay BB, Donnenberg MS. EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Mol Microbiol. 1996;20:313–23. DOIPubMedGoogle Scholar
- Salyers AA, Whitt DD. Bacterial Pathogenesis: A Molecular Approac, first ed. Washington D.C.: ASM Press, 1994.
- Cornelis GR. Yersinia Pathogenicity Factors. In: Hormaeche CE, Penn CW, Smyth CJ, editors. Molecular Biology of Bacterial Infection: Current Status and Future Perspectives. Cambridge: Cambridge University Press, 1992.
- Persson C, Nordfelth R, Holmström A, Håkansson S, Rosqvist R, Wolf-Watz H. Cell-surface-bound Yersinia translocate the protein tyrosine phosphatase YopH by a polarized mechanism into the target cell. Mol Microbiol. 1995;18:135–50. DOIPubMedGoogle Scholar
- Håkansson S, Galyov EE, Rosqvist R, Wolf-Watz H. The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cells plasma membrane. Mol Microbiol. 1996;20:593–603. DOIPubMedGoogle Scholar
- Sory M-P, Cornelis GR. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol. 1994;14:583–94. DOIPubMedGoogle Scholar
- Bliska JB, Guan K, Dixon JE, Falkow S. Tyrosine phosphatase hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci U S A. 1991;61:3914–21.
- Ménard R, Dehio C, Sansonetti PJ. Bacterial entry into epithelial cells: the paradigm of Shigella. Trends Microbiol. 1996;4:220–6. DOIPubMedGoogle Scholar
- Jones B, Pascopella L, Falkow S. Entry of microbes into the host: using M cells to break the mucosal barrier. Curr Opin Immunol. 1995;7:474–8. DOIPubMedGoogle Scholar
- Galán JE, Curtiss IR. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A. 1989;86:6386–7. DOIGoogle Scholar
- Shea JE, Hensel M, Gleeson C, Holden DW. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A. 1996;93:2593–7. DOIPubMedGoogle Scholar
- Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. Simultaneous identification of bacterial virulence genes by negative selection. Science. 1995;269:400–3. DOIPubMedGoogle Scholar
- Rosqvist R, Håkansson S, Forsberg Å, Wolf-Watz H. Functional conservation of the secretion and translocation machinery for virulence proteins of Yersiniae, Salmonellae and Shigellae. EMBO J. 1995;14:4187–95.PubMedGoogle Scholar
- Hermant D, Ménard R, Arricau N, Parsot C, Popoff MY. Functional conservation of the Salmonella and Shigella effectors of entry into epithelial cells. Mol Microbiol. 1995;17:781–9. DOIPubMedGoogle Scholar
- Woestyn S, Allaoui A, Wattiau P. YscN, the putative energizer of the Yersinia Yop secretion machinery. J Bacteriol. 1994;176:1561–9.PubMedGoogle Scholar
- Plano GV, Straley SC. Mutations in yscC, yscD, and yscG prevent high level expression and secretion of V antigen and Yops in Yersinia pestis. J Bacteriol. 1995;177:3843–54.PubMedGoogle Scholar
- Allaoui A, Woestyn S, Sluiters C, Cornelis GR. YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion. J Bacteriol. 1994;176:4534–42.PubMedGoogle Scholar
- Fields K, Plano GV, Straley SC. A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J Bacteriol. 1994;176:569–79.PubMedGoogle Scholar
- Allaoui A, Schulte R, Cornelis GR. Mutational analysis of Yersinia enterocolitica virC operon: characterization of yscE,F,G, I, J, K, required for Yop secretion and yscH encoding YopR. Mol Microbiol. 1995;18:343–55. DOIPubMedGoogle Scholar
- Allaoui A, Scheen R, de Rouvroit CL, Cornelis GR. VirG, a Yersinia enterocolitica lipoprotein involved in Ca2+ dependency, is related to ExsB of Pseudomonas aeruginosa. J Bacteriol. 1995;177:4230–7.PubMedGoogle Scholar
- Macnab RM. Flagella and Motility. In: Neidhardt FC et al., editors. Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology. Washington, D. C.: ASM Press, 1996.
- Rimpiläinen M, Forsberg Å, Wolf-Watz H. A novel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis shows extensive homology to YopH. J Bacteriol. 1992;174:3355–63.PubMedGoogle Scholar
- Håkansson S, Bergman T, Vanooteghem J-C, Cornelis G, Wolf-Watz H. YopB and YopD constitute a novel class of Yersinia Yop proteins. Infect Immun. 1993;61:71–80.PubMedGoogle Scholar
- Wattiau P, Woestyn S, Cornelis GR. Customized secretion chaperones in pathogenic bacteria. Mol Microbiol. 1996;20:255–62. DOIPubMedGoogle Scholar
- Frithz-Lindsten E, Rosqvist R, Johansson L, Forsberg Å. The chaperone-like protein YerA of Yersinia pseudotuberculosis stabilizes YopE in the cytoplasm but is dispensable for targeting to the secretion loci. Mol Microbiol. 1995;16:635–47. DOIPubMedGoogle Scholar
- Ménard R, Sansonetti P, Parsot C, Vasselon T. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell. 1994;79:515–25. DOIPubMedGoogle Scholar
- Skrzypek E, Straley SC. LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J Bacteriol. 1993;175:3520–8.PubMedGoogle Scholar
- Forsberg Å, Viitanen A-M, Skurnik M, Wolf-Watz H. The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol Microbiol. 1991;5:977–86. DOIPubMedGoogle Scholar
- Hughes KT, Gillen KL, Semon MJ, Karlinsey JE. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science. 1993;262:1277–80. DOIPubMedGoogle Scholar
- Ginocchio C, Galán JE. Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect Immun. 1994;63:729–32.
- Jarvis KG, Girón JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci U S A. 1995;92:7996–8000. DOIPubMedGoogle Scholar
- Ochman H, Groisman EA. The evolution of invasion by enteric bacteria. Can J Microbiol. 1995;41:555–61. DOIPubMedGoogle Scholar
- Li J, Ochman H, Groisman EA, Boyd EF, Solomon F, Nelson K, Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica. Proc Natl Acad Sci U S A. 1995;92:7252–6. DOIPubMedGoogle Scholar
- Lee CA. Pathogenicity islands and the evolution of bacterial pathogens. Infect Agents Dis. 1996;5:1–7.PubMedGoogle Scholar
- Morschhäuser J, Vetter V, Emödy L, Hacker J. Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: cross-talk between different adhesin gene clusters. Mol Microbiol. 1994;11:555–66. DOIPubMedGoogle Scholar
- Mills DM, Bajaj V, Lee CA. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol. 1995;15:749–59. DOIPubMedGoogle Scholar
- Stein MA, Leung KY, Zwick M, Garcia-del Portillo F, Finlay BB. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol. 1996;20:151–64. DOIPubMedGoogle Scholar
- Fetherston JD, Schuetze P, Perry RD. Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol. 1992;6:2693–704. DOIPubMedGoogle Scholar
- Fetherston JD, Perry RD. The pigmentation locus of Yersinia pestis KIM6+ is flanked by an insertion sequence and includes the structural genes for pesticin sensitivity and HMWP2. Mol Microbiol. 1994;13:697–708. DOIPubMedGoogle Scholar
- Iteman I, Guiyoule A, de Almeida AMP, Guilvout I, Baranton G, Carniel E. Relationship between loss of pigmentation and deletion of the chromosomal iron-regulated irp2 gene in Yersinia pestis: evidence for separate but related events. Infect Immun. 1993;61:2717–22.PubMedGoogle Scholar
- Rakin A, Urbitsch P, Heeseman J. Evidence for two evolutionary lineages of highly pathogenic Yersinia species. J Bacteriol. 1995;177:2292–8.PubMedGoogle Scholar
- Matic I, Taddei F, Radman M. Genetic barriers among bacteria. Trends Microbiol. 1996;4:69–73. DOIPubMedGoogle Scholar
- Falkow S. The evolution of pathogenicity in Escherichia, Shigella, and Salmonella. In: Neidhardt FC, et al. Escherichia coli and Salmonella Cellular and Molecular Biology. Washington, D. C.: ASM Press, 1996.
- Waldor MK, Mekalanos JJ. Cholera toxin is encoded by a filamentous bacteriophage that uses TCP pili as a receptor. Science. 1996;272:1910–4. DOIPubMedGoogle Scholar
- Guttman DS, Dykhuizen DE. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science. 1994;266:1380–3. DOIPubMedGoogle Scholar
- Inouye S, Sunshine MG, Six EW, Inouye M. Retronphage R73: an E. coli phage that contains a retroelement and integrates into a tRNA gene. Science. 1991;252:969–71. DOIPubMedGoogle Scholar
- Reiter W, Palm P, Yeats S. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 1989;17:1907–14. DOIPubMedGoogle Scholar
- Sun J, Inouye M, Inouye S. Association of a retroelement with a P4-like cryptic prophage (Retronphage R73) integrated into the selenocystyl tRNA gene of Escherichia coli. J Bacteriol. 1991;173:4171–81.PubMedGoogle Scholar
- Akerley BJ, Cotter PA, Miller JF. Ectopic expression of the flagellar regulon alters development of the Bordetella host interaction. Cell. 1995;80:611–20. DOIPubMedGoogle Scholar
- Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschape H, Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun. 1994;62:606–14.PubMedGoogle Scholar
- McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A. 1995;92:1664–8. DOIPubMedGoogle Scholar
- Ritter A, Blum G, Emody L, Kerenyi M, Bock A, Neuhierl B, tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol Microbiol. 1995;17:109–21. DOIPubMedGoogle Scholar
- Zagaglia C, Casalino M, Colonna B, Conti C, Calconi A, Nicoletti M. Virulence plasmids of enteroinvasive Escherichia coli and Shigella flexneri integrate into a specific site on the host chromosome: integration greatly reduces expression of plasmid-carried virulence genes. Infect Immun. 1991;59:792–9.PubMedGoogle Scholar
- Colonna B, Casalino M, Fradiani PA, Zagaglia C, Naitza S, Leoni L, H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome. J Bacteriol. 1995;177:4703–12.PubMedGoogle Scholar
- Zsigray RM, Hopper JB, Zukowski K, Chesbro WR. Integration of the Vwa plasmid into the chromosome of Yersinia pestis strains harboring F' plasmids of Escherichia coli. Infect Immun. 1985;47:670–3.PubMedGoogle Scholar
- Zsigray RM, Lawton WD, Surgalla MJ. Repression of the virulence of Yersinia pestis by an F' plasmid. Infect Immun. 1983;39:974–6.PubMedGoogle Scholar
- Protsenko OA, Filippov AA, Kutyrev VV. Integration of the plasmid encoding the synthesis of capsular antigen and murine toxin into Yersinia pestis chromosome. Microb Pathog. 1991;11:123–8. DOIPubMedGoogle Scholar
- Whittam TS, Wolfe ML, Wachsmuth IK, Ørskov F, Ørskov I, Wilson RA. Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun. 1993;61:1619–29.PubMedGoogle Scholar
- Waldor MK, Mekalanos JJ. Vibrio cholerae O139 specific gene sequences. Lancet. 1994;343:1366. DOIPubMedGoogle Scholar
- Pajni S, Charu S, Bhasin N, Ghosh A, Ramamurthy T, Nair GB, Studies on the genesis of Vibrio cholerae O139: identification of probable progenitor strains. Journal of Molecular Microbiology. 1995;42:20–5. DOIGoogle Scholar
- Bik EM, Bunschoten AE, Gouw RD, Mooi FR. Genesis of the novel epidemic Vibrio cholerae 139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 1995;14:209–16.PubMedGoogle Scholar
- Sory M-P, Hermand P, Vaerman J-P, Cornelius GR. Oral immunization of mice with a live recombinant Yersinia enterocolitica O:9 strain that produces the cholera toxin B subunit. Infect Immun. 1990;58:3830–6.
- Falkow S, Small P, Isberg R, Hayes SF, Corwin D. A molecular strategy for the study of bacterial invasion. Rev Infect Dis. 1987;9:S450–5.PubMedGoogle Scholar
- Swenson DL, Bukanov NO, Berg DE, Welch RA. Two pathogenicity islands in uropathogenic Escherichia coli strain J96: cosmid cloning and sample sequencing. Infect Immun. 1996;64:3736–43.PubMedGoogle Scholar
- Blum G, Falbo V, Caprioli A, Hacker J. Gene clusters encoding the cytotoxic necrotizing factor type 1, prs-fimbriae and -hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. Federation of European Microbiological Societies Microbiology Letters. 1995;126:189–96.
- Comstock LE, Johnson JA, Michalski JM, Morris JG Jr, Kaper JB. Cloning and sequence of a region encoding a surface polysaccharide of Vibrio cholerae O139 and characterization of the insertion site in the chromosome of Vibrio cholerae 01. Mol Microbiol. 1996;19:815–26. DOIPubMedGoogle Scholar
- Gouin E, Mengaud J, Cossart P. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Infect Immun. 1994;62:3550–3.PubMedGoogle Scholar
Page created: December 21, 2010
Page updated: December 21, 2010
Page reviewed: December 21, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.