Volume 4, Number 2—June 1998
Dispatch
Emergence of the M Phenotype of Erythromycin-Resistant Pneumococci in South Africa
Figure

Figure. Number of erythromycin-resistant blood and cerebro- spinal fluid isolates of pneumococci. DNA was extracted from pneumococcal isolates by using a lysis solution consisting of 0.1% sodium deoxycholate as described in (11), except that we used plate rather than broth cultures. Seventy-eight MLS strains were probed for the ermAM gene by using dot blots. The probe (supplied by P. Courvalin, Pasteur Institute, Paris, France) (Escherichia coli JM83/pUC19 560bp Ssp1 intragenic fragment of ermB) was labeled with digoxygenin by using random primed labeling (DIG DNA Labeling and Detection Kit; Boeringer, Mannheim, Germany). Hybridization and detection were performed following manufacturer's instructions (DIG DNA Labeling and Detection Kit; Boeringer, Mannheim, Germany). PCR was also used to detect ermAM in 30 strains according to standard conditions, with an annealing temperature of 58°C. We used the following primers: forward primer, 5'-CGAGTGAAAAAGTACTCAACC, reverse primer, 5'-GGCGTGTTTCATTGCTTGATG). Published primers for the mefE gene (5'-AGTATCATTAATCACTAGTGC, and 5'-TTCTTCTGGTACTAAAAGTGG) (12) were used to detect mefE through PCR amplification in 13 M strains. Amplification was performed in a Perkin Elmer Cetus DNA Thermal Cycler under standard reaction conditions, with an annealing temperature of 56oC.
References
- Dixon JMS. Pneumococcus resistant to erythromycin and lincomycin. Lancet. 1967;i:573. DOIGoogle Scholar
- Jacobs MR, Koornhof HJ, Robins-Browne RM, Stevenson CM, Vermaak ZA, Freiman I, Emergence of multiply resistant pneumococci. N Engl J Med. 1978;299:735–40.PubMedGoogle Scholar
- Lai C-J, Weisblum B. Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc Natl Acad Sci U S A. 1971;68:856. DOIPubMedGoogle Scholar
- Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995;39:577–85.PubMedGoogle Scholar
- Trieu-Cuot P, Poyart-Salmeron C, Carlier C, Courvalin P. Nucleotide sequence of the erythromycin resistance gene of the conjugative transposon Tn1545. Nucleic Acids Res. 1990;18:3660. DOIPubMedGoogle Scholar
- Horinouchi S, Byeon WH, Weisblum B. A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis. J Bacteriol. 1983;154:1252–62.PubMedGoogle Scholar
- Sutcliffe J, Tait-Kamradt A, Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother. 1996;40:1817–24.PubMedGoogle Scholar
- Tait-Kamradt A, Clancy J, Cronan M, Dib-Hajj F, Won-drack L, Yuan W, mefE is necessary for the erythro-mycin-resistant M phenotype in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1997;41:2251–5.PubMedGoogle Scholar
- Fernandez-Muñoz R, Monro RE, Torres-Pinedo R, Vasquez D. Substrate- and antibiotic-binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol, lincomycin and erythromycin sites. Eur J Biochem. 1971;23:185–93. DOIPubMedGoogle Scholar
- National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disc susceptibility tests. 6th ed. Wayne (PA): The Committee; 1997.
- Paton JC, Berry AM, Lock RA, Hansman D, Manning PA. Cloning and expression in Escherichia coli of the Streptococcus pneumoniae gene encoding pneumolysin. Infect Immun. 1986;54:50–5.PubMedGoogle Scholar
- Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L. Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother. 1996;40:2562–6.PubMedGoogle Scholar
- Robbins JB, Austrian R, Lee C-J, Rastogi SC, Schiffman G, Henrichsen J, Considerations for formulating the second generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups. J Infect Dis. 1983;148:1136–59.PubMedGoogle Scholar
- Gray BM, Converse GM III, Dillon HC Jr. Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage, and infection during the first 24 months of life. J Infect Dis. 1980;142:923–33.PubMedGoogle Scholar
- Friedland IR, Klugman KP. Failure of chloramphenicol therapy in penicillin-resistant pneumococcal meningitis. Lancet. 1992;339:405–8. DOIPubMedGoogle Scholar
- Ednie LM, Spangler SK, Jacobs MR, Appelbaum PC. Susceptibilities of 228 penicillin- and erythromycin-susceptible and -resistant pneumococci to RU 64004, a new ketolide, compared with susceptibilities to 16 other agents. Antimicrob Agents Chemother. 1997;41:1033–6.PubMedGoogle Scholar
- Reichler MR, Rakovsky J, Sobotová A, Sláciková M, Hlavácová B, Hill B, Multiple antimicrobial resistance of pneumococci in children with otitis media, bacteremia, and meningitis in Slovakia. J Infect Dis. 1995;171:1491–6.PubMedGoogle Scholar
- Gür D, Ünal S, Akalin HE. Resistance patterns in Turkey. Int J Antimicrob Agents. 1995;6:23–6. DOIPubMedGoogle Scholar
- Goldstein FW, Acar JF; The Alexander Project Collaborative Group. Antimicrobial resistance among lower respiratory tract isolates of Streptococcus pneumoniae: results of a 1992-93 Western Europe and USA collaborative study. J Antimicrob Chemother. 1996;38:71–84. DOIPubMedGoogle Scholar
- Aszkenasy OM, George RC, Begg NT. Pneumococcal bacteraemia and meningitis in England and Wales 1982 to 1992. Commun Dis Rep CDR Rev. 1995;5:R45–50.PubMedGoogle Scholar
- Doern GV, Brueggemann AB, Holley HP Jr, Rauch AM. Antimicrobial resistance of Streptococcus pneumoniae recovered from outpatients in the United States during the winter months of 1994 to 1995: results of a 30-year national surveillance study. Antimicrob Agents Chemother. 1996;40:1208–13.PubMedGoogle Scholar
- Butler JC, Hofmann J, Cetron MS, Elliott JA, Facklam RR, Breiman RF, The continued emergence of drug-resistant Streptococcus pneumoniae in the United States: an update from the Centers for Disease Control and Prevention's Pneumococcal Surveillance System. J Infect Dis. 1996;174:986–93.PubMedGoogle Scholar
- Vaz Pato MV, Belo de Carvalho C, Tomasz A. the Multicenter Study Group. Antibiotic susceptibility of Streptococcus pneumoniae isolates in Portugal. A multicenter study between 1989 and 1993. Microb Drug Resist. 1995;1:59–69. DOIPubMedGoogle Scholar
- Klugman KP, Koornhof HJ, Kuhnle V. Clinical and nasopharyngeal isolates of unusual multiply resistant pneumococci. Am J Dis Child. 1986;140:1186–90.PubMedGoogle Scholar
- Visalli MA, Jacobs MR, Appelbaum PC. Susceptibility of penicillin-susceptible and -resistant pneumococci to dirithromycin compared with susceptibilities to erythromycin, azithromycin, clarithromycin, roxithromycin, and clindamycin. Antimicrob Agents Chemother. 1997;41:1867–70.PubMedGoogle Scholar
- Pankuch GA, Lichtenberger C, Jacobs MR, Appelbaum PC. Antipneumococcal activities of RP 59500 (quinupristin-dalfopristin), penicillin G, erythromycin, and sparfloxacin determined by MIC and rapid time-kill methodologies. Antimicrob Agents Chemother. 1996;40:1653–6.PubMedGoogle Scholar
- Barry AL, Fuchs PC. In vitro activities of a streptogramin (RP59500), three macrolides, and an azalide against four respiratory tract pathogens. Antimicrob Agents Chemother. 1995;39:238–40.PubMedGoogle Scholar
- Burucoa C, Pasdeloup T, Chapon C, Fauchère JL, Robert R. Failure of pristinamycin treatment in a case of pneumococcal pneumonia. Eur J Clin Microbiol Infect Dis. 1995;14:341–2. DOIPubMedGoogle Scholar