Volume 6, Number 1—February 2000
Research
Norwalk-Like Calicivirus Genes in Farm Animals
Figure 1
References
- Kapikian AZ, Estes MK, Chanock M. Norwalk group of viruses. In: Fields BN, Knipe DM, Howley PM, Channock RM, Melnick JL, Monath TP, et al., editors. Fields virology. 3rd ed. Vol. 1. Philadelphia (PA): Lippincott-Raven; 1996. p. 783-810.
- Pringle CR. Virus taxonomy—San Diego 1998. Arch Virol 143:1449-59.
- Green KY. The role of human caliciviruses in epidemic gastroenteritis. Arch Virol Suppl. 1997;13:153–65.PubMedGoogle Scholar
- Vinjé J, Koopmans MPG. Molecular detection and epidemiology of small round structured viruses in outbreaks of gastroenteritis in the Netherlands. J Infect Dis. 1996;174:610–5.PubMedGoogle Scholar
- Vinjé J, Altena SA, Koopmans MPG. The incidence and genetic variability of small round-structured viruses in outbreaks of gastroenteritis in the Netherlands. J Infect Dis. 1997;176:1374–8. DOIPubMedGoogle Scholar
- Matson DO, Zhong WM, Nakata S, Numata K, Jiang X, Pickering LK, Molecular characterization of a human calicivirus with sequence relationships closer to animal caliciviruses. J Med Virol. 1995;45:215–22. DOIPubMedGoogle Scholar
- Ando T, Mulders MN, Lewis DC, Estes MK, Monroe SS, Glass RI. Comparison of the polymerase region of small round-structured virus strains previously classified in three serotypes by solid-phase immune electron microscopy. Arch Virol. 1994;135:217–26. DOIPubMedGoogle Scholar
- Jiang X, Cubitt WD, Berke T, Zhong W, Dai X, Nakata S, Sapporo-like human caliciviruses are genetically and antigenically diverse. Arch Virol. 1997;142:1813–27. DOIPubMedGoogle Scholar
- Green J, Vinjé J, Gallimore C, Koopmans MPG, Hale A, Brown D. Capsid protein diversity among Norwalk-like caliciviruses In press 2000.
- Vinjé J, Deijl H, van de Heide R, Lewis D, Hedlund K-O, Svensson L, Molecular detection and epidemiology of Sapporo-like viruses. J Clin Microbiol. 2000. In press.
- Noel JS, Fankhauser RL, Ando T, Monroe SS, Glass RI. Identification of a distinct common strain of Norwalk-like viruses having a global distribution. J Infect Dis. 1999;179:1334–44. DOIPubMedGoogle Scholar
- Sugieda M, Nagaoka H, Kakishima Y, Ohshita T, Nakamura S, Nakajima S. Detection of Norwalk-like virus genes in the caecum contents of pigs. Arch Virol. 1998;143:1215–21. DOIPubMedGoogle Scholar
- Granzow H, Schirmeier H. Identification of 32 nm viruses in faeces of diarrhoeic calves by electron microscopy. Monatsh Veterinarmed. 1985;40:228–9.
- Herbst W, Lange H, Krauss H. Elektronenmikroskopischer Nachweis von calicivirus-ähnlichen Partikeln im Kot durchfallkranker Kälber. Dtsch Tierarztl Wochenschr. 1987;94:381–440.
- Mochizuki M, Kawanishi A, Sakamoto S, Tashiro S, Fujimoto R, Ohwaki M. A calicivirus isolated from a dog with fatal diarrhoea. Vet Rec. 1993;132:221–2.PubMedGoogle Scholar
- Reckling KF. Use of electron microscopy for observation of small round viruses in faecal samples collected from calves and animals with diarrhoea. Monatsh Veterinarmed. 1987;42:272–5.
- Hashimoto M, Rierink F, Tohya Y, Mochizuki M. Genetic analysis of the RNA polymerase gene of caliciviruses from dogs and cats. J Vet Med Sci. 1999;61:603–8. DOIPubMedGoogle Scholar
- Cubitt D, Bradley MJ, Carter S, Chiba S, Estes MK, Saif LJ, Viral taxonomy, classification and nomenclature; sixth report of the committee on the taxonomy of viruses. Arch Virol Suppl 1997;ESVV 77-82, Reading, United Kingdom.
- Neill JD, Meyer RF, Seal BS. Genetic relatedness of the caliciviruses: San Miguel sea lion and vesicular exanthema of swine viruses constitute a single genotype within the Caliciviridae. J Virol. 1995;69:4484–8.PubMedGoogle Scholar
- Smith AW, Skilling DE, Cherry N, Mead JH, Matson DO. Calicivirus emergence from ocean reservoirs: zoonotic and interspecies movements. Emerg Infect Dis. 1998;4:13–20. DOIPubMedGoogle Scholar
- Liu BL, Lambden PR, Gunther H, Otto P, Elscher M, Clarke IN. Molecular characterization of a bovine enteric calicivirus: relationship to the Norwalk-like viruses. J Virol. 1999;73:819–25.PubMedGoogle Scholar
- Dastjerdi AM, Green J, Gallimore CI, Brown DWG, Bridger J. The bovine newbury agent-2 is genetically more closely related to human SRSVs than to animal caliciviruses. Virology. 1999;254:1–5. DOIPubMedGoogle Scholar
- Giessen van de AW. Frankena K, Leeuwen van WJ, Notermans SHW. An approach for monitoring salmonella serotypes in farm animals. Proceedings of the Symposium "Salmonella and salmonellosis." Ploufragan 1992:375-85.
- Boom R, Sol CJA, Salimans MMM, Jansen CL. Wertheim-van Dillen, van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990;28:495–503.PubMedGoogle Scholar
- Van der Peer Y, De Wachter R. TREECON for windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci. 1994;10:569–70.PubMedGoogle Scholar
- Flewett TH. Electron microscopy in the diagnosis of infectious diarrhea. J Am Vet Med Assoc. 1978;173:538–43.PubMedGoogle Scholar
- Doane FW, Anderson N. Pretreatment of clinical specimens and viral isolates. In: Electron microscopy in diagnostic virology. Cambridge: Cambridge University Press; 1987. p. 4-10.
- Caul EO, Appleton H. The electron microscopical and physical characteristics of small round human fecal viruses: an interim scheme for classification. J Med Virol. 1982;9:257–65. DOIPubMedGoogle Scholar
- Bruenn JA. Relationships among the positive strand and double-strand RNA viruses as viewed through their RNA-dependent RNA polymerases. Nucleic Acids Res. 1991;25:217–26. DOIGoogle Scholar
- Bridger JC, Hall GA, Brown JF. Characterization of a calici-like virus (Newbury agent) found in association with astrovirus in bovine diarrhea. Infect Immun. 1984;43:133–8.PubMedGoogle Scholar
- Smith AW, Akers TG. Vesicular exanthema of swine. J Am Vet Med Assoc. 1976;169:700–3.PubMedGoogle Scholar
- Reynolds DJ, Morgan JH, Chanter N, Jones PW, Bridger JC, Debney TG, Microbiology of calf diarrhoea in southern Britain. Vet Rec. 1986;119:34–9.PubMedGoogle Scholar
- Günther H, Otto P, Heilman P. Studies into diarrhoea of young calves. Sixth communication: detection and determination of pathogenicity of a bovine corona virus and an undefined icosahedric virus. Archiven Experimenteller Veterinärmedizin (Leipzeig). 1984;38:781–92.
- Will LA, Paul PS, Proescholdt TA, Aktar SN, Flaming KP, Janke BH, Evaluation of rotavirus infection and diarrhea in Iowa commercial pigs based on epidemiologic study of a population represented by diagnostic laboratory cases. J Vet Diagn Invest. 1994;6:416–22.PubMedGoogle Scholar
Page created: May 09, 2011
Page updated: May 09, 2011
Page reviewed: May 09, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.