Volume 9, Number 10—October 2003
Research
Escherichia coli O157 Exposure in Wyoming and Seattle: Serologic Evidence of Rural Risk
Table 1
Characteristics of regions | Population A (Lincoln County)b | Population B (Natrona County)b | Population C (King County)b | ||||
---|---|---|---|---|---|---|---|
Residents |
14,573 |
66,533 |
1,737,034 |
||||
Cattle |
53,000 |
62,000 |
30,500 |
||||
Cattle/km2
Cattle/resident |
5.1
3.6 |
4.5
0.93 |
5.5
0.017 |
||||
Residents/km2 | 1.4 | 4.8 | 315.4 |
References
- Wilson JB, Clarke RC, Renwick SA, Rahn K, Johnson RP, Karmali MA, Vero cytotoxigenic Escherichia coli infection in dairy farm families. J Infect Dis. 1996;174:1021–7.PubMedGoogle Scholar
- Tarr PI. Escherichia coli O157:H7: clinical, diagnostic, and epidemiological aspects of human infection. Clin Infect Dis. 1995;20:1–8.PubMedGoogle Scholar
- MacDonald KL, O’Leary MJ, Cohen ML, Norris P, Wells JG, Noll E, Escherichia coli O157:H7, an emerging gastrointestinal pathogen. Results of a one-year, prospective, population-based study. JAMA. 1988;259:3567–70. DOIPubMedGoogle Scholar
- Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, A multistate outbreak of Escherichia coli O157:H7–associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA. 1994;272:1349–53. DOIPubMedGoogle Scholar
- Keene WE, Hedberg K, Herriott DE, Hancock DD, McKay RW, Barrett TJ, A prolonged outbreak of Escherichia coli O157:H7 infections caused by commercially distributed raw milk. J Infect Dis. 1997;176:815–8. DOIPubMedGoogle Scholar
- Besser RE, Lett SM, Weber JT, Doyle MP, Barrett TJ, Wells JG, An outbreak of diarrhea and hemolytic uremic syndrome from Escherichia coli O157:H7 in fresh-pressed apple cider. JAMA. 1993;269:2217–20. DOIPubMedGoogle Scholar
- Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308:681–5. DOIPubMedGoogle Scholar
- Swerdlow DL, Woodruff BA, Brady RC, Greiffin PM, Tippen S, Donnell HD Jr, A waterborne outbreak in Missouri of Escherichia coli O157:H7 associated with bloody diarrhea and death. Ann Intern Med. 1992;117:812–9.PubMedGoogle Scholar
- Belongia EA, Osterholm MT, Soler JT, Ammend DA, Braun JE, MacDonald KL. Transmission of Escherichia coli 0157:H7 infection in Minnesota child day-care facilities. JAMA. 1993;269:883–8. DOIPubMedGoogle Scholar
- Locking ME, O’Brien SJ, Reilly WJ, Wright EM, Campbell DM, Coia JE, Risk factors for sporadic cases of Escherichia coli O157 infection: the importance of contact with animal excreta. Epidemiol Infect. 2001;127:215–20. DOIPubMedGoogle Scholar
- O’Brien SJ, Adak GK, Gilham C. Contact with farming environment as a major risk factor for Shiga toxin (Vero cytotoxin–producing Escherichia coli O157 infection in humans. Emerg Infect Dis. 2001;7:1049–51. DOIPubMedGoogle Scholar
- Lahti E, Eklund M, Ruutu P, Siitonen A, Rantala L, Nuorti P, Use of phenotyping and genotyping to verify transmission of Escherichia coli O157:H7 from dairy farms. Eur J Clin Microbiol Infect Dis. 2002;21:189–95. DOIPubMedGoogle Scholar
- Crump JA, Sulka AC, Langer AJ, Schaben C, Crielly AS, Gage R, An outbreak of Escherichia coli O157:H7 infections among visitors to a dairy farm. N Engl J Med. 2002;347:555–60. DOIPubMedGoogle Scholar
- Kernland KH, Laux-End R, Truttmann AC, Reymond D, Bianchetti MG. [How is hemolytic-uremic syndrome in childhood acquired in Switzerland?]. [In German]. Schweiz Med Wochenschr. 1997;127:1229–33.PubMedGoogle Scholar
- Reymond D, Johnson RP, Karmali MA, Petric M, Winkler M, Johnson S, Neutralizing antibodies to Escherichia coli Vero cytotoxin 1 and antibodies to O157 lipopolysaccharide in healthy farm family members and urban residents. J Clin Microbiol. 1996;34:2053–7.PubMedGoogle Scholar
- Belongia EA, Chyou PH, Greenlee RT, Perez-Perez G, Bibb WF, De Vries EO. Diarrhea incidence and farm-related risk factors for Escherichia coli 0157:H7 and Campylobacter jejuni antibodies among rural children. J Infect Dis. 2003;187:1460–8. DOIPubMedGoogle Scholar
- Banatvala N, Griffin PM, Greene KD, Barrett TJ, Bibb WF, Green JH, The United States National Prospective Hemolytic Uremic Syndrome Study: microbiologic, serologic, clinical, and epidemiologic findings. J Infect Dis. 2001;183:1063–70. DOIPubMedGoogle Scholar
- Reida P, Wolff M, Pohls HW, Kuhlmann W, Lehmacher A, Aleksic S, An outbreak due to enterohaemorrhagic Escherichia coli O157:H7 in a children day care centre characterized by person-to-person transmission and environmental contamination. Zentralbl Bakteriol. 1994;281:534–43.PubMedGoogle Scholar
- Olsen SJ, Miller G, Kennedy M, Higgins C, Walford J, McKee G, A waterborne outbreak of Escherichia coli O157:H7 infections and hemolytic uremic syndrome: implications for rural water systems. Emerg Infect Dis. 2002;8:370–5. DOIPubMedGoogle Scholar
- Profile of general demographic characteristics: 2000. Geographic area: Casper City, Wyoming. Available from: URL: http://www.census.gov/prod/cen2000/dp1/2kh56pdf
- Tarr PI, Neill MA, Clausen CR, Newland JW, Neill RJ, Moseley SL. Genotypic variation in pathogenic Escherichia coli O157:H7 isolated from patients in Washington, 1984–1987. J Infect Dis. 1989;159:344–7.PubMedGoogle Scholar
- Inzana TJ, Pichichero ME. Lipopolysaccharide subtypes of Haemophilus influenzae type b from an outbreak of invasive disease. J Clin Microbiol. 1984;20:145–50.PubMedGoogle Scholar
- Bilge SS, Vary JC Jr, Dowell SF, Tarr PI. Role of the Escherichia coli O157:H7 O side chain in adherence and analysis of an rfb locus. Infect Immun. 1996;64:4795–801.PubMedGoogle Scholar
- Toth I, Barrett TJ, Cohen ML, Rumschlag HS, Green JH, Wachsmuth IK. Enzyme-linked immunosorbent assay for products of the 60-megadalton plasmid of Escherichia coli serotype O157:H7. J Clin Microbiol. 1991;29:1016–9.PubMedGoogle Scholar
- Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1989.
- Glantz SS, Glantz SA. Primer of biostatistics. 4th ed. New York: McGraw-Hill Health Professions Division; 1997.
- Tarr PI, Schoening LM, Yea YL, Ward TR, Jelacic S, Whittam TS. Acquisition of the rfb-gnd cluster in evolution of Escherichia coli O55 and O157. J Bacteriol. 2000;182:6183–91. DOIPubMedGoogle Scholar
- Bettelheim KA, Evangelidis H, Pearce JL, Sowers E, Strockbine NA. Isolation of a Citrobacter freundii strain which carries the Escherichia coli O157 antigen. J Clin Microbiol. 1993;31:760–1.PubMedGoogle Scholar
- Chapman PA. Evaluation of commercial latex slide test for identifying Escherichia coli 0157. J Clin Pathol. 1989;42:1109–10. DOIPubMedGoogle Scholar
- Bielaszewska M, Janda J, Blahova K, Minarikova H, Jokova E, Karmali MA, Human Escherichia coli O157:H7 infection associated with the consumption of unpasteurized goat’s milk. Epidemiol Infect. 1997;119:299–305. DOIPubMedGoogle Scholar
- Ludwig K, Bitzan M, Bobrowski C, Muller-Wiefel DE. Escherichia coli O157 fails to induce a long-lasting lipopolysaccharide-specific, measurable humoral immune response in children with hemolytic-uremic syndrome. J Infect Dis. 2002;186:566–9. DOIPubMedGoogle Scholar
- Valcour JE, Michel P, McEwen SA, Wilson JB. Associations between indicators of livestock farming intensity and incidence of human shiga toxin–producing Escherichia coli infection. Emerg Infect Dis. 2002;8:252–7. DOIPubMedGoogle Scholar
- Rice DH, Hancock DD, Besser TE. Verotoxigenic E. coli O157 colonisation of wild deer and range cattle. Vet Rec. 1995;137:524. DOIPubMedGoogle Scholar
- Siegler RL, Griffin PM, Barrett TJ, Strockbine NA. Recurrent hemolytic uremic syndrome secondary to Escherichia coli O157:H7 infection. Pediatrics. 1993;91:666–8.PubMedGoogle Scholar
- Robson WL, Leung AK, Miller-Hughes DJ. Recurrent hemorrhagic colitis caused by Escherichia coli O157:H7. Pediatr Infect Dis J. 1993;12:699–701. DOIPubMedGoogle Scholar
- Sibbald CJ, Sharp JC. Campylobacter infection in urban and rural populations in Scotland. J Hyg (Lond). 1985;95:87–93. DOIPubMedGoogle Scholar
- Barrett NJ. Communicable disease associated with milk and dairy products in England and Wales: 1983–1984. J Infect. 1986;12:265–72. DOIPubMedGoogle Scholar
Page created: January 07, 2011
Page updated: January 07, 2011
Page reviewed: January 07, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.