Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 10, Number 12—December 2004
Research

Origin of the Amphibian Chytrid Fungus

Ché Weldon*Comments to Author , Louis H. du Preez*, Alex D. Hyatt†, Reinhold Muller‡, and Rick Speare‡
Author affiliations: *North-West University, Potchefstroom, South Africa; †CSIRO, Geelong, Australia; ‡James Cook University, Townsville, Australia

Main Article

Figure 3

Time bar indicating when chytridiomycosis first appeared in the major centers of occurrence in relation to each other. Following a 23-year interruption in occurrences after the Xenopus laevis infection in 1938, records outside Africa appear with increasing frequency up until the present; North America (22), Australia (2,23), South America (5), Central America (24), Europe (6), Oceania (New Zealand) (25).

Figure 3. Time bar indicating when chytridiomycosis first appeared in the major centers of occurrence in relation to each other. Following a 23-year interruption in occurrences after the Xenopus laevis infection in 1938, records outside Africa appear with increasing frequency up until the present; North America (22), Australia (2,23), South America (5), Central America (24), Europe (6), Oceania (New Zealand) (25).

Main Article

References
  1. Daszak  P, Berger  L, Cunningham  AA, Hyatt  AD, Green  DE, Speare  R. Emerging infectious diseases and amphibian population declines. Emerg Infect Dis. 1999;5:73548. DOIPubMedGoogle Scholar
  2. Speare  R; Core Working Group of Getting the Jump on Amphibian Disease. Nomination for listing of amphibian chytridiomycosis as a key threatening process under the Environment Protection and Biodiversity Conservation Act 1999. In: Speare R, Steering Committee of Getting the Jump on Amphibian Disease, editors. Developing management strategies to control amphibian diseases: decreasing the risks due to communicable diseases. Townsville, Australia: School of Public Health and Tropical Medicine, James Cook University; 2001. p. 163–84. Available from http://www.jcu.edu.au/school/phtm/PHTM/frogs/adms/attach7.pdf.
  3. Berger  L, Speare  R, Daszak  P, Green  DE, Cunningham  AA, Gonnin  CL, Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci U S A. 1998;95:90316. DOIPubMedGoogle Scholar
  4. Lips  KR. Mass mortality of the anuran fauna at an upland site in Panama. Conserv Biol. 1999;13:11725. DOIGoogle Scholar
  5. Bonaccorso  E, Guayasamin  JM, Méndez  D, Speare  R. Chytridiomycosis in a Venezuelan amphibian (Bufonidae: Atelopus cruciger). Herpetol Rev. 2003;34:3314.
  6. Bosh  J, Martínez-Solano  I, García-Prís  M. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol Conserv. 2000;97:3317. DOIGoogle Scholar
  7. Channing  A, Van Dijk  DE. Amphibia. In: Cowan GI, editor. Wetlands of South Africa. Pretoria, South Africa.: Department of Environmental Affairs and Tourism; 1995. p. 193–206.
  8. Harrison  JA, Burger  M, Minter  LR, De Villiers  AL, Baard  EHW, Scott  E, , eds. Conservation assessment and management plan for southern African frogs. Apple Valley (MN): World Conservation Union/Species Survival Commission Conservation Breeding Specialist Group; 2001.
  9. Weldon  C. Chytridiomycosis survey in South Africa. Froglog. 2002;51:12.
  10. Hopkins  S, Channing  A. Chytrid fungus in Northern and Western cape frog populations, South Africa. Herp Rev. 2003;34:3346.
  11. Lane  EP, Weldon  C, Bingham  J. Histological evidence of chytridiomycosis in a free-ranging amphibian (Afrana fuscigula [Anura: Ranidae]) in South Africa. J S A Vet Assoc. 2003;74:20–1.
  12. Speare  R, Berger  L. Global distribution of chytridiomycosis in amphibians. 2002 Oct [cited 2003 Feb 11]. Available from http://www.jcu.edu.au/school/phtm/PHTM/frogs/chyglob.htm
  13. Carey  C, Cohen  N, Rollins-Smith  L. Amphibian declines: an immunological perspective. Dev Comp Immunol. 1999;23:45972. DOIPubMedGoogle Scholar
  14. Morse  SS. Factors in the emergence of infections diseases. Emerg Infect Dis. 1995;1:715. DOIPubMedGoogle Scholar
  15. Carey  C, Bradford  DF, Brunner  JL, Collins  JP, Davidson  EW, Longcore  JE, In: Linder G, Krest SK, Sparling DW, editors. Amphibian decline: an integrated analysis of multiple stressor effects. Pensacola (FL): Society of Environmental Toxicology and Chemistry; 2003. p. 153–208.
  16. Sparling  DW, Kerst  SK, Linder  G. In: Linder G, Krest SK, Sparling DW, editors. Amphibian decline: an integrated analysis of multiple stressor effects. Pensacola (FL): Society of Environmental Toxicology and Chemistry; 2003. p. 1–7.
  17. Tinsley  RC, Loumont  C, Kobel  HR. In: Tinsley RC, Kobel HR, editors. The biology of Xenopus. Oxford, UK: Clarendon Press; 1996. p. 35–59.
  18. Channing  A. Amphibians of central and southern Africa. Menlo Park, Pretoria, South Africa: Protea Book House; 2001.
  19. Culling  CFA. Handbook of histopathological techniques. London: Butterworths; 1963.
  20. Berger  L, Speare  R, Kent  A. Diagnosis of chytridiomycosis in amphibians by histologic examination. In: Speare R, Steering Committee of Getting the Jump on Amphibian Disease, editors. Developing management strategies to control amphibian diseases: Decreasing the risks due to communicable diseases. Townsville, Australia: School of Public Health and Tropical Medicine, James Cook University; 2001. p. 83–93. Available from http://www.jcu.edu.au/school/phtm/PHTM/frogs/histo/chhisto.htm
  21. Berger  L, Hyatt  AD, Olsen  V, Hengstberger  S, Boyle  D, Marantelli  G, Production of polyclonal antibodies to Batrachochytrium dendrobatidis and their use in an immunoperoxidase test for chytridiomycosis in amphibians. Dis Aquat Organ. 2002;48:21320. DOIPubMedGoogle Scholar
  22. Quellet  M, Mikaelian  I, Pauli  BD, Rodrique  J, Green  DM. Historical evidence of widespread chytrid infection in North American amphibian populations. 2003 Joint Meeting of Ichthyologists and Herpetologists, 26 June–1 July 2003, Manaus, Amazonas, Brazil [cited 2004 April 10]. Available from http://lists.allenpress.com/asih/meetings/2003/abstracts_IV_2003.pdf
  23. Berger  L, Speare  R, Hyatt  A. Chytrid fungi and amphibian declines: Overview, implications and future directions. In: Campbell A, editor. Declines and disappearances of Australian frogs. Canberra, Australia: Biodiversity Group Environment Australia; 1999. p. 23–33.
  24. Rollins-Smith  LA, Reinert  LK, Miera  V, Conlon  JM. Antimicrobial peptide defenses of the Tarahumara frog, Rana tarahumarae. Biochem Biophys Res Commun. 2002;297:3617. DOIPubMedGoogle Scholar
  25. Waldman  B, van de Wolfshaar  KE, Klena  JD, Andjic  V, Bishop  PJ. Norman RJdeB. Chytridiomycosis in New Zealand frogs. Surveillance. 2001;28:911.
  26. Reed  KR, Ruth  GR, Meyer  JA, Shukla  SK. Chlamydia pneumoniae infection in a breeding colony of African clawed frogs (Xenopus tropicalis). Emerg Infect Dis. 2000;6:1969. DOIPubMedGoogle Scholar
  27. Parker  JM, Mikaelian  I, Hahn  N, Diggs  HE. Clinical diagnosis and treatment of epidermal chytridiomycosis in African clawed frogs (Xenopus tropicalis). Comp Med. 2002;52:2658.PubMedGoogle Scholar
  28. Mutschmann  F, Berger  L, Zwart  P, Gaedicke  C. [Chytridiomycosis in amphibians - first report in Europe.]. Berl Munch Tierarztl Wochenschr. 2000;113:3803.PubMedGoogle Scholar
  29. Mazzoni  R, Cunningham  AC, Daszak  P, Apolo  A, Perdomo  E, Speranza  G. Emerging pathogen of wild amphibians in frogs (Rana catesbiana) farmed for international trade. Emerg Infect Dis. 2003;9:9958.PubMedGoogle Scholar
  30. Hey  D. Water and Wildlife. Cape Town, South Africa: Timmins Publishers; 1986.
  31. Hogben  LT, Charles  E, Slome  D. Studies of the pituitary. J Exp Biol. 1931;8:345.
  32. Shapiro  HA, Zwarenstein  H. A rapid test for pregnancy on Xenopus laevis. Nature. 1934;133:762. DOIGoogle Scholar
  33. Shapiro  HA. The influence of the pituitary-like substance in human pregnancy urine on the motor components of sexual behavior in the South African clawed toad (Xenopus laevis). J Exp Biol. 1936;13:4856.
  34. Provincial Administration of the Cape of Good Hope, Union of South Africa. Inland Fisheries Department Report No. 6. Cape Town, South Africa: The Institute; 1949.
  35. Provincial Administration of the Cape of Good Hope, Union of South Africa. Department of Nature Conservation Report No. 27. Cape Town, South Africa: The Institute; 1970.
  36. Johnson  ML, Speare  R. Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control implications. Emerg Infect Dis. 2003;9:9225.PubMedGoogle Scholar
  37. Tinsley  RC, McCoid  MJ. In: The biology of Xenopus. Oxford, UK: Clarendon Press; 1996. p. 81–94.
  38. Daszak  P. in Speare R, Berger L. Global distribution of chytridiomycosis in amphibians. 2004. [cited 2004 April 10] Available from http://www.jcu.edu.au/school/phtm/PHTM/frogs/chyglob.htm
  39. Moorehouse  EA, James  TY, Ganley  ARD, Vilgalys  R, Berger  L, Murphy  PJ, Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol Ecol. 2003;12:395403. DOIPubMedGoogle Scholar

Main Article

Page created: April 14, 2011
Page updated: April 14, 2011
Page reviewed: April 14, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external