Volume 11, Number 3—March 2005
Perspective
Fly Transmission of Campylobacter
Table A1
Evidence for seasonal associations between factors linked to human Campylobacter infections or outbreaks. Download PDF(71Kb, 6 pages).
Risk factor | Outbreaks | Evidence for factor causing seasonal increase | Evidence against factor causing seasonal increase |
---|---|---|---|
Chicken/turkey | (17–23) | Chicken is the food most commonly contaminated with Campylobacter. A substantial portion of infection probably derives from this source (17–22,24–26). Some evidence shows that Campylobacter contamination of chickens is seasonal. | Chicken is not the vehicle for most sporadic Campylobacter infections (24,27,28). Little evidence exists that the seasonal differences in Campylobacter in chickens are sufficient to drive the seasonality of human disease (29-34). |
Salads and fruit | (35-37) | Untreated leaf salads and soft fruits might be potential sources of human campylobacteriosis (25, 35-37) because these raw products are eaten without any heat treatment. | In most of the outbreaks involving salad items, cross-contamination from contaminated raw foods was thought to be involved. While seasonal import of fresh fruit or vegetables from different countries might represent a potential source of infection it would be surprising if this manifested itself as an annual nationwide outbreak across the whole of England and Wales while remaining refractory to epidemiologic investigation. Fly transmission from animal feces may be important. |
Cross-contamination from raw meats to ready-to-eat foods | (25) | Cross-contamination from raw meats to ready to eat foods within kitchens and retail premises probably contributes significantly to Campylobacter infection. | Why cross-contamination should be strongly influenced by the season is unclear, unless levels of raw meat contamination change with the seasons. |
Unpasteurized or inadequately pasteurized milk | (22, 38-49) | Unpasteurized or badly pasteurized milk can be a source of Campylobacter infection (22,39, 42, 45, 49-52). Milk could cause the seasonality if the numbers of Campylobacter in raw milk changed with the season and other critical control points in milk production (pasteurization) are not tightly maintained. Infections related to consumption of unpasteurized milk appear to be seasonal, with a peak in May, which suggests seasonal changes in the Campylobacter contamination of unpasteurized milk. | No evidence shows that the seasonality of human disease is largely due to unpasteurized milk because this product is not commonly consumed. No evidence shows that pasteurization varies substantially by season. |
Birds | (53,54) | Campylobacter is common in birds. Migratory birds result in large seasonal changes in the inputs to the environment from bird feces and could contribute to human Campylobacter exposure (55). Migratory birds could be a seasonally changing driver to human disease (56). The main likely exposure route if this were the case would be direct contact with contaminated bird feces in the garden, contamination of field-grown fruit and vegetables and contamination of source waters for drinking. Bird-pecked milk is a recognized route by which Campylobacter infection can be acquired (53,54). The contamination is thought to result from birds feeding consecutively on cow feces and milk in bottles. The infections related to bird-pecked milk appear to be seasonal in distribution with a marked increase in May (57). | Bird-pecked milk is unlikely to be the cause of the worldwide seasonal distribution of Campylobacter infections. Fly transmission from bird feces, particularly farmed poultry, may be important. Evidence from extensive monitoring of ready-to-eat foods sampled at retail businesses suggests little evidence of Campylobacter contamination (Little, pers. comm.). |
Barbecue | (17) | Barbecue use might be a contributing factor to the total Campylobacter infection because standards of food safety associated with barbecue use are likely to be poorer (17,58, 59). Case-control studies have found associations between barbecue use and sporadic Campylobacter infection (60,61). | Barbecue use on its own is unlikely a big enough, or seasonal enough, driver of disease to account for seasonal changes in incidence. |
Food packaging | The packaging around chickens is commonly contaminated with Campylobacter, which may represent a source of some infections through cross-contamination. | Strong seasonal changes in the extent of this contamination would have to exist for this factor to affect the disease epidemiology, and no evidence for these changes exists. | |
Food handlers/hygiene | (62-66) | Infected food handlers might represent a source of infection in catering premises. | Infections in food handlers probably are seasonal, reflecting the seasonality of Campylobacter in general, but they are probably not the driver for the overall seasonality. |
Food, stir-fried | (17) | Stir-fried food may be contaminated through inadequately cooking raw ingredients or cross-contamination. | A seasonal change in the contamination of raw ingredients would need to exist to explain the epidemiology. |
Flies | Flies provide a biological explanation for the spring increase in Campylobacter cases through the increase in fly numbers. Campylobacter has been isolated from flies, and the low infectious dose required to cause human disease would make this route credible. Historical records link “summer diarrhea” to flies. | Little hard evidence exists for this transmission route. | |
Mains drinking water | (44, 67-76) | With mains water supplies, the relatively even distribution of seasonal changes in the distribution of Campylobacter cases suggests that any contamination of public supplies must be systemic (a generic problem with all supplies) or a much bigger regional difference in the incidence would be seen. Potential seasonal differences in water quality that could explain why treatment might not prevent sporadic Campylobacter infection through mains water (e.g., viable noncultivable Campylobacter in chlorine-resistant protozoa) are not supported by evidence. The rarity of outbreaks associated with public water supplies suggests that drinking water is not a substantial source of Campylobacter infection. | |
Private drinking water supplies/untreated surface water, rain water, or well water | (22, 75,77-86) | Waterborne infection associated with private water supplies can result in outbreaks of infection because many people drink the contaminated water (87). Campylobacter is the most common organism causing these outbreaks. A seasonal change in water quality could occur. | Seasonal changes in water contamination should trigger outbreaks rather than a national increase in sporadic disease. The comparative rarity of outbreaks associated with private supplies suggests that this source does not substantially contribute to the total illness that is seen to change dramatically with the season. Given the influence of surface water on the microbiologic quality of private water supplies, we expect that the seasonal occurrence of Campylobacter might be more influenced by rainfall than time of year, which does not appear to happen. |
Bottled water | In a case-case study of Campylobacter, people with C. coli infection were more likely to have drunk bottled water than were those with C. jejuni infection (88). Natural mineral water is not disinfected and could be a widely dispersed product that experiences seasonal changes in contamination. | Sources of water that are used to produce natural mineral water and other bottled waters are relatively well protected. These groundwaters are unlikely to be contaminated with Campylobacter. If bottled water consumption is a risk factor, it should come up as such in analytic epidemiologic studies of Campylobacter infection. It is unclear why the seasonal pattern of infection should be so constant both geographically and annually if bottled water contamination is such a substantial contributor to human disease. | |
Pools, lakes, and streams | Potential exists for illness after swallowing contaminated recreational water (89-92). Water sports in natural waters can be a source of exposure. If the contamination of water with Campylobacter is seasonal, then any seasonality in this group could be linked to either changes in water quality or behavior. | Illness associated with recreational water activity has not been established, and this is unlikely to be the source of the spring increase in campylobacteriosis. Little evidence shows that the change in recreational water activity in the spring is enough to explain the seasonal change in Campylobacter cases. | |
Within-family transmission | (93) | Person-to-person transmission can occur. | No obvious reason explains why within-household transmission of Campylobacter should be seasonal, given that personal hygiene practices are not likely to change substantially over a matter of weeks. |
Domestic catering | Domestic food preparation may contribute to human Campylobacter disease. | Fly transmission within kitchens may contribute to transmission, and this would likely be seasonal. Little else within the kitchen environment, other than the contamination of raw food ingredients, is likely to vary seasonally. | |
Nursery/childcare/school | (94,95) | As Campylobacter is common in children, transmission may occur within the childcare setting. | No evidence shows that infections in childcare are common or that they vary through the year. |
Nosocomial transmission | (96) | Nosocomial transmission cannot account for the national seasonal increase in cases. | |
Pets | Pets, particularly kittens and puppies, have been postulated as a source of Campylobacter. Canine births, as recorded in Kennel Club and Guide Dogs for the Blind Association records, show a strong seasonal distribution, and this factor has been proposed as a driver for human disease (97). | Little evidence shows that the seasonal change in Campylobacter is directly related to pets, although fly transmission from animal feces may be important. | |
Farm animals | (98) | Campylobacter strains isolated from cattle have been linked to strains from human infections (99,100). Cattle and sheep represent a reservoir of Campylobacter (101,102), and milkborne outbreaks (23, 39,42,45,49-55) suggest that other routes may occur. Fecal shedding by sheep may be more frequent around lambing (103). Seasonal differences in Campylobacter infections have also been demonstrated in rhesus monkeys, other agricultural animals, and birds (31, 32, 104-107). | Any seasonality of Campylobacter infection or colonization in animals could cause seasonality in humans, but this seasonality is most likely to result from the contamination of food. Fly transmission from animal feces may be important. |
Farm visits | (108) | Visits to farms can expose children to common zoonotic enteric pathogens, including Campylobacter. | Any seasonality of farm visits is unlikely to contribute to the seasonal distribution of all cases. |
The countryside | Direct environmental exposure could occur through walking in the country. | This activity may be seasonal but is unlikely to contribute to the strong seasonal distribution of cases. | |
Travel | Campylobacter has been linked to overseas travel (109-111), including military service (112,113), and probably represents a significant percentage of all cases of travelers' diarrhea (114-117). In some countries, >50% of Campylobacter cases may be linked to foreign travel (118) | The seasonality of Campylobacter does not follow the seasonality of travel abroad. | |
Weather/climate | In some developing countries a higher incidence was seen in the rainy season (119, 120), which suggests flies might be contributory. Although Campylobacter is more common during the summer months and has been linked to temperature (121), no direct relationship was seen between temperature and cases of human disease. The different seasonal distribution in different countries appears to be partly temperature-related | Little evidence shows that Campylobacter is associated with rainfall. There was no association between thermophilic Campylobacter in lambs at slaughter and rainfall (105). The main seasonal driver for Campylobacter infection is not likely to be rainfall itself, since the increase appears to occur annually, irrespective of when most rain falls. | |
Immunologic response | The immunologic response to Campylobacter exposure could change throughout the year. This hypothesis has been studied in male rhesus monkeys (104). A marked seasonality was seen ,with the frequency of TH1-type cytokine synthesis in the summer being markedly greater than in the winter, whereas TH2-type cytokine expression did not vary between the seasons. | Current evidence suggests that seasonal changes in immunologic response to Campylobacter infection are unlikely to account for the major seasonal changes in Campylobacter incidence. |
References
- Tam CC. Campylobacter reporting at its peak year of 1998: don't count your chickens yet. Commun Dis Public Health. 2001;4:194–9.PubMedGoogle Scholar
- Frost JA, Gillespie IA, O'Brien SJ. Public health implications of campylobacter outbreaks in England and Wales, 1995–9: epidemiological and microbiological investigations. Epidemiol Infect. 2002;128:111–8. DOIPubMedGoogle Scholar
- Gillespie IA, O'Brien SJ, Frost JA, Adak GK, Horby P, Swan AV, A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses.
- Louis VR, Gillespie IA, O'Brien SJ, Russek-Cohen E, Pearson AD, Colwell RR. Temperature driven Campylobacter seasonality in England and Wales. Appl Environ Microbiol. 2005;71:85–92. DOIPubMedGoogle Scholar
- Khalil K, Lindblom GB, Mazhar K, Kaijser B. Flies and water as reservoirs for bacterial enteropathogens in urban and rural areas in and around Lahore, Pakistan. Epidemiol Infect. 1994;113:435–44. DOIPubMedGoogle Scholar
- Rosef O, Kapperud G. House flies (Musca domestica) as possible vectors of Campylobacter fetus subsp. jejuni. Appl Environ Microbiol. 1983;45:381–3.PubMedGoogle Scholar
- Shane SM, Montrose MS, Harrington KS. Transmission of Campylobacter jejuni by the housefly (Musca domestica). Avian Dis. 1985;29:384–91. DOIPubMedGoogle Scholar
- Chavasse DC, Shier RP, Murphy OA, Huttly SR, Cousens SN, Akhtar T. Impact of fly control on childhood diarrhoea in Pakistan: community-randomised trial. Lancet. 1999;353:22–5. DOIPubMedGoogle Scholar
- Cohen D, Green M, Block C, Slepon R, Ambar R, Wasserman SS, Reduction of transmission of shigellosis by control of houseflies (Musca domestica). Lancet. 1991;337:993–7. DOIPubMedGoogle Scholar
- Emerson PM, Lindsay SW, Walraven GE, Faal H, Bogh C, Lowe K, Effect of fly control on trachoma and diarrhoea. Lancet. 1999;353:1401–3. DOIPubMedGoogle Scholar
- Niven J. Summer diarrhoea and enteric fever. Proc R Soc Med. 1910;III(Epidem. Sect.):131–216.
- Kettle DS. Medical and veterinary entomology. 2nd ed. Wallingford (UK): CABI Publishing; 2000.
- Skirrow MB. A demographic survey of campylobacter, salmonella, and shigella infections in England. A Public Health Laboratory Service survey. Epidemiol Infect. 1987;99:647–57. DOIPubMedGoogle Scholar
- Kapperud G, Aasen S. Descriptive epidemiology of infections due to thermotolerant Campylobacter spp. in Norway, 1979–1988. APMIS. 1992;100:883–90. DOIPubMedGoogle Scholar
- Hald B, Skovgard H, Bang DD, Pedersen K, Dybdahl J, Jespersen JB, Flies and Campylobacter infection of broiler flocks. Emerg Infect Dis. 2004;10:1490–2. DOIPubMedGoogle Scholar
- Evans MR, Lane W, Frost JA, Nylen G. A campylobacter outbreak associated with stir-fried food. Epidemiol Infect. 1998;121:275–9. DOIPubMedGoogle Scholar
- Kessel AS, Gillespie IA, O'Brien SJ, Adak GK, Humphrey TJ, Ward LR. General outbreaks of infectious intestinal disease linked with poultry, England and Wales, 1992–1999. Commun Dis Public Health. 2001;4:171–7.PubMedGoogle Scholar
- Murphy O, Gray J, Gordon S, Bint AJ. An outbreak of campylobacter food poisoning in a health care setting. J Hosp Infect. 1995;30:225–8. DOIPubMedGoogle Scholar
- Pearson AD, Greenwood MH, Donaldson J, Healing TD, Jones DM, Shahamat M, Continuous source outbreak of campylobacteriosis traced to chicken. J Food Prot. 2000;63:309–14.PubMedGoogle Scholar
- Hanninen ML, Perko-Makela P, Pitkala A, Rautelin H. A three-year study of Campylobacter jejuni genotypes in humans with domestically acquired infections and in chicken samples from the Helsinki area. J Clin Microbiol. 2000;38:1998–2000.PubMedGoogle Scholar
- Humphrey TJ, Henley A, Lanning DG. The colonization of broiler chickens with Campylobacter jejuni: some epidemiological investigations. Epidemiol Infect. 1993;110:601–7. DOIPubMedGoogle Scholar
- Roels TH, Wickus B, Bostrom HH, Kazmierczak JJ, Nicholson MA, Kurzynski TA, A foodborne outbreak of Campylobacter jejuni (O:33) infection associated with tuna salad: a rare strain in an unusual vehicle. Epidemiol Infect. 1998;121:281–7. DOIPubMedGoogle Scholar
- Fahey T, Morgan D, Gunneburg C, Adak GK, Majid F, Kaczmarski E. An outbreak of Campylobacter jejuni enteritis associated with failed milk pasteurisation. J Infect. 1995;31:137–43. DOIPubMedGoogle Scholar
- Jones PH, Willis AT, Robinson DA, Skirrow MB, Josephs DS. Campylobacter enteritis associated with the consumption of free school milk. J Hyg (Lond). 1981;87:155–62. DOIPubMedGoogle Scholar
- Korlath JA, Osterholm MT, Judy LA, Forfang JC, Robinson RA. A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis. 1985;152:592–6. DOIPubMedGoogle Scholar
- Porter IA, Reid TM. A milk-borne outbreak of Campylobacter infection. J Hyg (Lond). 1980;84:415–9. DOIPubMedGoogle Scholar
- Robinson DA, Edgar WJ, Gibson GL, Matchett AA, Robertson L. Campylobacter enteritis associated with consumption of unpasteurised milk. BMJ. 1979;1:1171–3. DOIPubMedGoogle Scholar
- Robinson DA, Jones DM. Milk-borne campylobacter infection. Br Med J (Clin Res Ed). 1981;282:1374–6. DOIPubMedGoogle Scholar
- Lehner A, Schneck C, Feierl G, Pless P, Deutz A, Brandl E, Epidemiologic application of pulsed-field gel electrophoresis to an outbreak of Campylobacter jejuni in an Austrian youth centre. Epidemiol Infect. 2000;125:13–6. DOIPubMedGoogle Scholar
- Djuretic T, Wall PG, Nichols G. General outbreaks of infectious intestinal disease associated with milk and dairy products in England and Wales: 1992 to 1996. Commun Dis Rep CDR Rev. 1997;7:R41–5.PubMedGoogle Scholar
- Olsen SJ, Hansen GR, Bartlett L, Fitzgerald C, Sonder A, Manjrekar R, An outbreak of Campylobacter jejuni infections associated with food handler contamination: the use of pulsed-field gel electrophoresis. J Infect Dis. 2001;183:164–7. DOIPubMedGoogle Scholar
- Gent RN, Telford DR, Syed Q. An outbreak of campylobacter food poisoning at a university campus. Commun Dis Public Health. 1999;2:39–42.PubMedGoogle Scholar
- Wight JP, Rhodes P, Chapman PA, Lee SM, Finner P. Outbreaks of food poisoning in adults due to Escherichia coli O111 and campylobacter associated with coach trips to northern France. Epidemiol Infect. 1997;119:9–14. DOIPubMedGoogle Scholar
- Engberg J, Gerner-Smidt P, Scheutz F, Moller NE, On SL, Molbak K. Water-borne Campylobacter jejuni infection in a Danish town—a 6-week continuous source outbreak. Clin Microbiol Infect. 1998;4:648–56. DOIPubMedGoogle Scholar
- Godoy P, Artigues A, Nuin C, Aramburu J, Perez M, Dominguez A, Outbreak of gastroenteritis caused by Campylobacter jejuni transmitted through drinking water. Med Clin (Barc). 2002;119:695–8.PubMedGoogle Scholar
- Hanninen ML, Haajanen H, Pummi T, Wermundsen K, Katila ML, Sarkkinen H, Detection and typing of Campylobacter jejuni and Campylobacter coli and analysis of indicator organisms in three waterborne outbreaks in Finland. Appl Environ Microbiol. 2003;69:1391–6. DOIPubMedGoogle Scholar
- Jones IG, Roworth M. An outbreak of Escherichia coli O157 and campylobacteriosis associated with contamination of a drinking water supply. Public Health. 1996;110:277–82. DOIPubMedGoogle Scholar
- Holme R. Drinking water contamination in Walkerton, Ontario: positive resolutions from a tragic event. Water Sci Technol. 2003;47:1–6.PubMedGoogle Scholar
- Maurer AM, Sturchler D. A waterborne outbreak of small round structured virus, campylobacter and shigella co-infections in La Neuveville, Switzerland, 1998. Epidemiol Infect. 2000;125:325–32. DOIPubMedGoogle Scholar
- Melby K, Gondrosen B, Gregusson S, Ribe H, Dahl OP. Waterborne campylobacteriosis in northern Norway. Int J Food Microbiol. 1991;12:151–6. DOIPubMedGoogle Scholar
- Furtado C, Adak GK, Stuart JM, Wall PG, Evans HS, Casemore DP. Outbreaks of waterborne infectious intestinal disease in England and Wales, 1992–5. Epidemiol Infect. 1998;121:109–19. DOIPubMedGoogle Scholar
- Melby KK, Svendby JG, Eggebo T, Holmen LA, Andersen BM, Lind L, Outbreak of Campylobacter infection in a subartic community. Eur J Clin Microbiol Infect Dis. 2000;19:542–4. DOIPubMedGoogle Scholar
- Rautelin H, Koota K, von Essen R, Jahkola M, Siitonen A, Kosunen TU. Waterborne Campylobacter jejuni epidemic in a Finnish hospital for rheumatic diseases. Scand J Infect Dis. 1990;22:321–6. DOIPubMedGoogle Scholar
- Stehr-Green JK, Nicholls C, McEwan S, Payne A, Mitchell P. Waterborne outbreak of Campylobacter jejuni in Christchurch: the importance of a combined epidemiologic and microbiologic investigation. N Z Med J. 1991;104:356–8.PubMedGoogle Scholar
- Centers for Disease Control and Prevention. Outbreak of Escherichia coli O157:H7 and Campylobacter among attendees of the Washington County Fair—New York, 1999. MMWR Morb Mortal Wkly Rep. 1999;48:803–5.PubMedGoogle Scholar
- Bopp DJ, Sauders BD, Waring AL, Ackelsberg J, Dumas N, Braun-Howland E, Detection, isolation, and molecular subtyping of Escherichia coli O157:H7 and Campylobacter jejuni associated with a large waterborne outbreak. J Clin Microbiol. 2003;41:174–80. DOIPubMedGoogle Scholar
- Millson M, Bokhout M, Carlson J, Spielberg L, Aldis R, Borczyk A, An outbreak of Campylobacter jejuni gastroenteritis linked to meltwater contamination of a municipal well. Can J Public Health. 1991;82:27–31.PubMedGoogle Scholar
- Aho M, Kurki M, Rautelin H, Kosunen TU. Waterborne outbreak of Campylobacter enteritis after outdoors infantry drill in Utti, Finland. Epidemiol Infect. 1989;103:133–41. DOIPubMedGoogle Scholar
- Moore JE, Caldwell PS, Millar BC, Murphy PG. Occurrence of Campylobacter spp. in water in Northern Ireland: implications for public health. Ulster Med J. 2001;70:102–7.PubMedGoogle Scholar
- Savill MG, Hudson JA, Ball A, Klena JD, Scholes P, Whyte RJ, Enumeration of Campylobacter in New Zealand recreational and drinking waters. J Appl Microbiol. 2001;91:38–46. DOIPubMedGoogle Scholar
- Stanley KN, Wallace JS, Currie JE, Diggle PJ, Jones K. The seasonal variation of thermophilic campylobacters in beef cattle, dairy cattle and calves. J Appl Microbiol. 1998;85:472–80. DOIPubMedGoogle Scholar
- Mattila L, Siitonen A, Kyronseppa H, Simula I, Oksanen P, Stenvik M, Seasonal variation in etiology of travelers' diarrhea. Finnish-Moroccan Study Group. J Infect Dis. 1992;165:385–8. DOIPubMedGoogle Scholar
- Black RE. Pathogens that cause travelers' diarrhea in Latin America and Africa. Rev Infect Dis. 1986;8(Suppl 2):S131–5. DOIPubMedGoogle Scholar
- Brasseur D, Casimir G, Goyens P. Campylobacter jejuni and infantile traveller's diarrhoea. Eur J Pediatr. 1986;144:517–8. DOIPubMedGoogle Scholar
Page created: April 25, 2012
Page updated: April 25, 2012
Page reviewed: April 25, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.