Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 11, Number 7—July 2005
Dispatch

SARS Coronavirus Detection Methods

Figures
Tables
Article Metrics
46
citations of this article
EID Journal Metrics on Scopus
Author affiliations: *University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China; †First Military Medical University, Guangzhou, People's Republic of China; ‡Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China

Cite This Article

Abstract

Using clinical samples from patients with severe acute respiratory syndrome, we showed that the sensitivities of a quantitative reverse transcription–polymerase chain reaction (80% for fecal samples and 25% for urine samples) were higher than those of the polyclonal (50% and 5%) and monoclonal (35% and 8%) antibody-based nucleocapsid antigen capture enzyme-linked immunosorbent assays.

The epidemic of severe acute respiratory syndrome (SARS) in 2003, caused by SARS-associated coronavirus (SARS-CoV), has affected 30 countries, with 8,098 cases and 774 deaths (18). Early diagnosis of SARS-CoV infection, which involves viral detection, is important for preventing future epidemics. Since culturing of SARS-CoV is difficult and insensitive, the reverse transcription–polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR) has been the working standard in diagnosis (2,9). Nevertheless, these techniques are relatively expensive and rely on the availability of equipment and expertise. We recently reported the development of 2 sandwich enzyme-linked immunosorbent assays (ELISAs) for detection of SARS-CoV nucleocapsid protein in clinical specimens of SARS patients (10,11). However, no studies have been conducted to compare the sensitivities of ELISA with those of RT-PCR. Although PCR assays are generally more sensitive, ELISAs are less expensive and easier to conduct (12,13). To evaluate the potential usefulness of ELISA in diagnosing SARS-CoV infections, we compared the performance of ELISA and qRT-PCR and studied the correlation between their results.

The Study

Fecal specimens (n = 40, from 40 patients 1–27 days after symptom onset) and urine specimens (n = 133, from 101 patients 2–57 days after symptom onset) were collected from SARS patients hospitalized in Hong Kong from March to May 2003. SARS was confirmed by the presence of serum immunoglobulin (Ig) G against SARS-CoV by an immunofluorescence assay (4). Specimens were tested with polyclonal and monoclonal antibody–based capture ELISAs for SARS-CoV nucleocapsid protein and real-time qRT-PCR. Control urine (n = 100) and fecal (n = 100) specimens were obtained from hospitalized patients without SARS.

SARS-CoV nucleocapsid protein was detected by polyclonal antibody–based ELISA according to published protocols (7,11). SARS-CoV nucleocapsid protein was detected by monoclonal antibody–based ELISA using a modified protocol for serum samples (10). Briefly, fecal and urine specimens were inactivated with 2% and 0.5% phenol, respectively, for 15 min before centrifugation and dilution in phosphate-buffered saline with 2% skim milk. One hundred microliters of 1:10 diluted fecal specimens or 1:2 diluted urine specimens was added to wells previously coated with antinucleocapsid monoclonal antibodies. Plates were incubated, washed, treated with antinucleocapsid rabbit monoclonal antibodies, and analyzed as described previously (10,11). RNA extraction and real-time qPCR assay specific for the 1b region of SARS-CoV were conducted as described previously (3,9).

We compared the detection rates of 2 ELISAs and real-time qRT-PCR using the McNemar test and studied the correlation between the optical density values at 450 nm (OD450) of the 2 ELISAs and log10 viral concentrations, as determined by real-time qRT-PCR, by linear regression (SPSS version 11.0, SPSS Inc., Chicago, IL, USA). A p value <0.05 was regarded as significant.

Figure

Thumbnail of Evaluation of polyclonal and monoclonal antibody–based enzyme-linked immunosorbent assays (ELISAs) for detecting nucleocapsid protein in fecal and urine specimens. The dashed horizontal lines represent the corresponding cutoff optical density values at 450 nm (OD450). SARS, severe acute respiratory syndrome.

Figure. . Evaluation of polyclonal and monoclonal antibody–based enzyme-linked immunosorbent assays (ELISAs) for detecting nucleocapsid protein in fecal and urine specimens. The dashed horizontal lines represent the corresponding cutoff optical density values...

A comparison of the 2 ELISAs is shown in the Figure and Table 1. The cutoffs of the polyclonal antibody–based ELISA have been determined previously, with specificities of 96% and 99% for fecal and urine specimens, respectively (11). The baselines of the monoclonal antibody–based ELISA were determined by using 100 control fecal and urine specimens, with mean OD450 values of 0.089 and 0.05 and standard deviation (SD) values of 0.074 and 0.03, respectively. The specificities of the monoclonal antibody–based ELISA were 93% for fecal specimens and 98% for urine specimens, as determined using cutoffs defined as the mean + 2 SD. Of 40 fecal samples obtained from SARS patients, 20 (50%) obtained on days 9 to 23 after onset of symptoms were positive by the polyclonal antibody–based ELISA, and 14 (35%) obtained on days 2 to 21 were positive by the monoclonal antibody–based ELISA. Of 133 urine samples, 6 (5%) obtained on days 16 to 32 after onset of symptoms were positive by the polyclonal antibody–based ELISA, and 11 (8%) obtained on days 6 to 45 were positive by the monoclonal antibody–based ELISA. Results of the polyclonal antibody–based ELISA were comparable with our previous data on different specimens (11). The OD450 values of both fecal (Pearson correlation 0.610, p<0.0005) and urine specimens (Pearson correlation 0.475, p<0.0005) detected by the 2 ELISAs were significantly correlated.

Conclusions

The method of choice for early diagnosis of SARS-CoV infection should be the qRT-PCR. The sensitivity of qRT-PCR is superior to that of both ELISAs. Moreover, qRT-PCR can detect SARS-CoV earlier in fecal specimens (Tables 1 and 2). Among the 40 fecal samples from SARS patients, 32 (80%) were positive by qRT-PCR, which was significantly higher than that of the polyclonal (50%) and monoclonal (35%) antibody-based ELISAs (McNemar test, p<0.005 and p<0.001, respectively). Of the 133 urine samples from SARS patients, 33 (25%) were positive by qRT-PCR, which was also significantly higher than that of the polyclonal (5%) and monoclonal (8%) antibody-based ELISAs (McNemar test, p<0.001 for both comparisons). When qRT-PCR was used as a standard, the sensitivities of the polyclonal and monoclonal antibody–based ELISAs were 53.1% (17/32) and 43.8% (14/32) in fecal specimens, and 12.1% (4/33) and 15.2% (5/33) in urine specimens, respectively. The qRT-PCR can detect SARS-CoV in fecal specimens obtained on days 1 to 27 after onset of symptoms and in urine specimens obtained on days 9 to 45. Moreover, 6 (75%) of the 8 fecal specimens obtained on days 1 to 10 were positive by qRT-PCR. All 3 tests had the highest detection rates in fecal specimens collected on days 16 to 20, which suggested that this was the period of peak viral shedding in stool. The detection rates in urine specimens were much lower than those in fecal specimens in all 3 assays.

SARS-CoV can be detected during the late phase of illness. Since SARS-CoV cannot be readily isolated from SARS patients after week 3 of illness (14), the detection of SARS-CoV beyond this time may be due to prolonged shedding of nonviable viruses in these patients or the presence of neutralizing immunoglobulins in clinical specimens, which has prevented viral replication in cell cultures.

SARS-CoV RNA concentration and ELISA results were correlated. Higher detection rates by both ELISAs were found in specimens with higher viral concentrations (Table 2). There was also a significant correlation between viral load and ELISA OD450 values in fecal specimens tested with the monoclonal antibody–based ELISA (Pearson correlation 0.424, p = 0.003), and in urine specimens tested with both the polyclonal and monoclonal antibody–based ELISAs (Pearson correlation 0.386 and 0.331, respectively, p<0.0005 in both analysis). Although the correlation between viral load and ELISA OD450 values in fecal specimens tested with the polyclonal antibody–based ELISA was not significant, there was a trend for such a correlation (Pearson correlation 0.229, p = 0.078).

In this study, fecal and urine samples were used because they are easier and safer to obtain and more readily available. In our previous reports, nucleocapsid protein was detected by the polyclonal antibody–based ELISA in 83% of nasopharyngeal aspirates collected on days 11 to 15 after symptom onset and by the monoclonal antibody–based ELISA in 85% of serum obtained during the first 10 days (10,11). These findings suggest that ELISA may be more useful when used with nasopharyngeal aspirate and serum specimens. However, these specimens were not included in the current study because only small amounts were available. Similar studies should be conducted if such samples are available.

This study was supported by the Research Grant Council Grant (HKU 7532/03M); Vice-Chancellor SARS Research Fund (21395035/39839/20700/420/01 and 21395061/27944/20700/420/01), The University of Hong Kong; and Suen Chi Sun Charitable Foundation SARS Research Fund.

Dr. Lau is assistant professor in the Department of Microbiology, University of Hong Kong. Her research interests include emerging infectious diseases and novel pathogens.

Top

References

  1. Ksiazek  TG, Erdman  D, Goldsmith  CS, Zaki  SR, Peret  T, Emery  S, A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:195366. DOIPubMedGoogle Scholar
  2. Peiris  JS, Chu  CM, Cheng  VC, Chan  KS, Hung  IF, Poon  LL, Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia – a prospective study. Lancet. 2003;361:176772. DOIPubMedGoogle Scholar
  3. Peiris  JS, Yuen  KY, Osterhaus  AD, Stohr  K. The severe acute respiratory syndrome. N Engl J Med. 2003;349:243141. DOIPubMedGoogle Scholar
  4. Peiris  JS, Lai  ST, Poon  LL, Guan  Y, Yam  LY, Lim  W, Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:131925. DOIPubMedGoogle Scholar
  5. Woo  PC, Lau  SK, Wong  BH, Tsoi  HW, Fung  AM, Chan  KH, Detection of specific antibodies to SARS coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J Clin Microbiol. 2004;42:23069. DOIPubMedGoogle Scholar
  6. Woo  PC, Lau  SK, Wong  BH, Chan  KH, Chu  CM, Tsoi  HW, Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against SARS coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clin Lab Diagn Immunol. 2004;11:6658.PubMedGoogle Scholar
  7. Woo  PC, Lau  SK, Tsoi  HW, Chan  KH, Wong  BHL, Che  XY, Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia. Lancet. 2004;363:8415. DOIPubMedGoogle Scholar
  8. Guan  Y, Zheng  BJ, He  YQ, Liu  XL, Zhuang  ZX, Cheung  CL, Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:2768. DOIPubMedGoogle Scholar
  9. Poon  LL, Wong  OK, Chan  KH, Luk  W, Yuen  KY, Peiris  JS, Rapid diagnosis of a coronavirus associated with severe acute respiratory syndrome (SARS). Clin Chem. 2003;49:9535. DOIPubMedGoogle Scholar
  10. Che  XY, Qiu  LW, Pan  YX, Wen  K, Hao  W, Zhang  LY, Sensitive and specific monoclonal antibody–based capture enzyme immunoassay for detection of nucleocapsid antigen in sera from patients with severe acute respiratory syndrome. J Clin Microbiol. 2004;42:262935. DOIPubMedGoogle Scholar
  11. Lau  SK, Woo  PC, Wong  BH, Tsoi  HW, Woo  GK, Poon  RW, Detection of SARS coronavirus nucleocapsid protein in SARS patients by enzyme-linked immunosorbent assay. J Clin Microbiol. 2004;42:28849. DOIPubMedGoogle Scholar
  12. Borkowsky  W, Krasinski  K, Pollack  H, Hoover  W, Kaul  A, Ilmet-Moore  T. Early diagnosis of human immunodeficiency virus infection in children less than 6 months of age: comparison of polymerase chain reaction, culture, and plasma antigen capture techniques. J Infect Dis. 1992;166:6169. DOIPubMedGoogle Scholar
  13. Nubling  CM, Unger  G, Chudy  M, Raia  S, Lower  J. Sensitivity of HCV core antigen and HCV RNA detection in the early infection phase. Transfusion. 2002;42:103745. DOIPubMedGoogle Scholar
  14. Chan  KH, Poon  LL, Cheng  VC, Guan  Y, Hung  IF, Kong  J, Detection of SARS coronavirus in patients with suspected SARS. Emerg Infect Dis. 2004;10:2949.PubMedGoogle Scholar

Top

Figure
Tables

Top

Cite This Article

DOI: 10.3201/eid1107.041045

Table of Contents – Volume 11, Number 7—July 2005

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Kwok-Yung Yuen, Department of Microbiology, University of Hong Kong, University Pathology Building, Queen Mary Hospital, Hong Kong, People's Republic of China; fax: 852-2855-1241

Send To

10000 character(s) remaining.

Top

Page created: April 23, 2012
Page updated: April 23, 2012
Page reviewed: April 23, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external