Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 11, Number 7—July 2005
Research

Norovirus Recombination in ORF1/ORF2 Overlap

Rowena Bull*, Grant S. Hansman†, Leighton E. Clancy*‡, Mark M. Tanaka*, William D. Rawlinson*‡, and Peter A. White*Comments to Author 
Author affiliations: *University of New South Wales, Sydney, New South Wales, Australia; †University of Tokyo, Tokyo, Japan; ‡Prince of Wales Hospital, Randwick, New South Wales, Australia

Main Article

Table

Norovirus (NoV) recombinant strains and their close relatives

Prototype NoV recombinant strain (ref.)* Sequence length
Parental strain‡
Genotype of recombinant§
Related strains (>96%)
RdRp† Capsid RdRp† Capsid RdRp† Capsid Breakpoint¶ Isolate name Accession no. (ref.)
Arg320/1995/AR (12) 872 1647 Lordsdale New Orleans/279 novel GII.3 4981 Sydney 2212 AY588132 (this study)
Sydney C14/02/AU (this study) 420 550 Hawaii Mexico novel GII.3 5108 Bad Berleberg AF409067
Herzberg AF539439
Oberhausen 455 AF539440
Paris Island AY652979
OS120458 AB071035
Picton/2003/AU (this study) 420 550 Pont de Roide AY682549 Richmond novel GII.1 5039 Gourdon 78 AY580335
Saitama U1/02/JP (10) 1527 1666 Lordsdale Hawaii GII.4 GII.12 5038 Honolulu AF414420
gifu 96 AB045603
Schwerin AF397905
9912-02F AB044366 (13)
Mc37/03/TH (11) 1527 1647 Lordsdale New Orleans/306 GII.4 GII.10 5108 Vietnam 026 AF504671 (13)
Vietnam 0703 AY237442 (13)
Snow Mountain 1/76/US (9) 420 1629 Hawaii Melksham novel GII.2 4981 None found NA
E3/1997/Crete (unpub.) 872 564 Lordsdale Melksham GII.4 GII.2 5068 None found NA
VannesL23/1999/FR (unpub.) 815 576 MOH Richmond GII.5 GII.1/GII.12 5039 Tiffin AY502010
S63/1999/FR (unpub.) 872 576 Melksham MOH GII.2 GII.5 5117 None found
WUGI/02/JP AB081723 (10) 3370 1620 Southampton/91 L07418 BS5 AF093797 GI.4 GI.2 5359 None found

*All strains belong to genogroup II except for WUGI/02/JP, which belongs to genogroup I.
†RdRp, RNA-dependent RNA polymerase.
‡Strain used to determine breakpoint, closest matching strain in the database where enough sequence data were available for analysis. GenBank accession nos. are in Figure 1 unless stated.
§For NoV GI (strain WUGI/02/JP), the classification system of Katayama et al. (10) was used; for GII (all other strains), the classification system of Vinjé et al. (23) was used. Closely related sequences are underlined.
¶Breakpoint determined by using the method of Smith (20) relative to Lordsdale nucleotide position for NoV GII (open reading frame [ORF]1/ORF2 overlap 5085–5104) and Norwalk for NoV GI (ORF1/ORF2 overlap 5358–5374). p value <0.0001.

Main Article

References
  1. Koopmans  MPG, von Bonsdorrf  CH, Vinje  J, DeMedici  D, Monroe  SS. Foodborne enteric viruses. FEMS Microbiol Rev. 2002;26:187205.PubMedGoogle Scholar
  2. Fankhauser  RL, Monroe  SS, Noel  JS, Humphrey  CD, Bresee  JS, Parashar  UD, Epidemiological and molecular trends of "Norwalk-like viruses" associated with outbreaks of gastroenteritis in the United States. J Infect Dis. 2002;186:17. DOIPubMedGoogle Scholar
  3. Noel  JS, Fankhauser  RL, Ando  T, Monroe  SS, Glass  RI. Identification of a distinct common strain of "Norwalk-like viruses" having a global distribution. J Infect Dis. 1999;179:133444. DOIPubMedGoogle Scholar
  4. Atmar  RL, Estes  MK. Diagnosis of noncultivatable gastroenteritis viruses, the human caliciviruses. Clin Microbiol Rev. 2001;14:1537. DOIPubMedGoogle Scholar
  5. Green  KY, Chanock  RM, Kapikan  AZ. Human calicivirus. In: Knipe DM, Howley PM, editors. Fields virology. Volume 1. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 841–74.
  6. Bertolotti-Ciarlet  A, White  LJ, Chen  R, Prasad  BV, Estes  MK. Structural requirements for the assembly of Norwalk virus-like particles. J Virol. 2002;76:404455. DOIPubMedGoogle Scholar
  7. Worobey  M, Holmes  EC. Evolutionary aspects of recombination in RNA viruses. J Gen Virol. 1999;80:253543.PubMedGoogle Scholar
  8. Lai  MMC. RNA recombination in animal and plant viruses. Microbiol Rev. 1992;56:6179.PubMedGoogle Scholar
  9. Hardy  ME, Kramer  SE, Treanor  JJ, Estes  MK. Human calicivirus genogroup II capsid sequence diversity revealed by analyses of the prototype Snow Mountain agent. Arch Virol. 1997;142:146979. DOIPubMedGoogle Scholar
  10. Katayama  K, Shirato-Horikoshi  H, Kojima  S, Kageyama  T, Oka  T, Hoshino  FB, Phylogenetic analysis of the complete genome of 18 Norwalk-like viruses. Virology. 2002;299:22539. DOIPubMedGoogle Scholar
  11. Hansman  GS, Katayama  K, Peerakome  N, Khamrin  P, Tonusin  S, Okitsu  S, Genetic diversity of norovirus and sapovirus in hospitalized infants with sporadic cases of acute gastroenteritis in Thailand. J Clin Microbiol. 2004;42:13057. DOIPubMedGoogle Scholar
  12. Jiang  X, Espul  C, Zhong  WM, Cuello  H, Matson  DO. Characterization of a novel human calicivirus that may be a naturally occurring recombinant. Arch Virol. 1999;144:237787. DOIPubMedGoogle Scholar
  13. Hansman  GS, Doan  LTP, Kguyen  TA, Okitsu  S, Katayama  K, Ogawa  S, Detection of norovirus and sapovirus infection among children with gastroenteritis in Ho Chi Minh City, Vietnam. Arch Virol. 2004;149:167388. DOIPubMedGoogle Scholar
  14. Han  MG, Smiley  JR, Thomas  C, Saif  LJ. Genetic recombination between two genotypes of genogroup III bovine noroviruses (BoNVs) and capsid sequence diversity among BoNVs and Nebraska-like bovine enteric caliciviruses. J Clin Microbiol. 2004;42:521424. DOIPubMedGoogle Scholar
  15. Oliver  SL, Brown  DW, Green  J, Bridger  JC. A chimeric bovine enteric calicivirus: evidence for genomic recombination in genogroup III of the Norovirus genus of the Caliciviridae. Virology. 2004;326:2319. DOIPubMedGoogle Scholar
  16. Katayama  K, Miyoshi  T, Uchino  K, Oka  T, Tanaka  T, Naokazu  T, Novel recombinant sapovirus. Emerg Infect Dis. 2004;10:18746.PubMedGoogle Scholar
  17. White  PA, Hansman  GS, Li  A, Dable  J, Isaacs  M, Ferson  M, Norwalk-like virus 95/96-US strain is a major cause of gastroenteritis outbreaks in Australia. J Med Virol. 2002;68:1138. DOIPubMedGoogle Scholar
  18. Felsenstein  J. PHYLIP inference package, version 3.5c. Seattle: University of Washington; 1993.
  19. Page  RDM. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996;12:3578.PubMedGoogle Scholar
  20. Smith  JM. Analyzing the mosaic structure of genes. J Mol Evol. 1992;34:1269. DOIPubMedGoogle Scholar
  21. Lole  K, Bollinger  R, Paranjape  R, Gadkari  D, Kulkarni  S, Novak  N, Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol. 1999;73:15260.PubMedGoogle Scholar
  22. Posada  D. Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol. 2002;19:70817. DOIPubMedGoogle Scholar
  23. Vinjé  J, Hamidjaja  RA, Sobsey  MD. Developmental and application of a capsid VP1 (region D) based reverse transcription PCR assay for genotyping of genogroup I and II noroviruses. J Virol Methods. 2004;116:10917. DOIPubMedGoogle Scholar
  24. Vinjé  J, Green  J, Lewis  DC, Gallimore  CI, Brown  DW, Koopmans  MP. Genetic polymorphism across regions of the three open reading frames of "Norwalk-like viruses.". Arch Virol. 2000;145:22341. DOIPubMedGoogle Scholar
  25. Gallimore  CI, Green  J, Richards  AF, Cotterill  H, Curry  A, Brown  DW, Methods for the detection and characterisation of noroviruses associated with outbreaks of gastroenteritis: outbreaks occurring in the north-west of England during two norovirus seasons. J Med Virol. 2004;73:2808. DOIPubMedGoogle Scholar
  26. Meyers  G, Wirblich  C, Thiel  HJ. Rabbit hemorrhagic disease virus—molecular cloning and nucleotide sequencing of a calicivirus genome. Virology. 1991;184:66476. DOIPubMedGoogle Scholar
  27. Herbert  TP, Brierley  I, Brown  TDK. Detection of the ORF3 polypeptide of feline calicivirus in infected cells and evidence for its expression from a single, functionally bicistronic, subgenomic RNA. J Gen Virol. 1996;77:1237. DOIPubMedGoogle Scholar
  28. Pletneva  MA, Sosnovtsev  SV, Green  KY. The genome of Hawaii virus and its relationship with other members of the Caliciviridae. Virus Genes. 2001;23:516. DOIPubMedGoogle Scholar
  29. Miller  WA, Dreher  TW, Hall  TC. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-) sense genomic RNA. Nature. 1985;313:6870. DOIPubMedGoogle Scholar
  30. Morales  M, Barcena  J, Ramirez  MA, Boga  JA, Parra  F, Torres  JM. Synthesis in vitro of rabbit hemorrhagic disease virus subgenomic RNA by internal initiation on (-) sense genomic RNA. J Biol Chem. 2004;279:170138. DOIPubMedGoogle Scholar
  31. Kao  CC, Singh  P, Ecker  DJ. De novo initiation of viral RNA-dependent RNA synthesis. Virology. 2001;287:25160. DOIPubMedGoogle Scholar
  32. Cooper  PD, Steiner-Pryor  A, Scotti  PD, Delong  D. On the nature of poliovirus genetic recombinants. J Gen Virol. 1974;23:419. DOIPubMedGoogle Scholar
  33. Miller  WA, Koev  G. Minireview: synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology. 2000;273:18. DOIPubMedGoogle Scholar
  34. Ishikawa  M, Janda  M, Krol  MA, Ahlquist  P. In vivo DNA expression of functional brome mosaic virus RNA replicons in Saccharomyces cerevisiae. J Virol. 1997;71:778190.PubMedGoogle Scholar
  35. Haseltine  WA, Kleid  DG, Panet  A, Rothenberg  E, Baltimore  D. Ordered transcription of RNA tumor virus genomes. J Mol Biol. 1976;106:10931. DOIPubMedGoogle Scholar
  36. van Marle  G, Dobbe  JC, Gultyaev  AP, Luytjes  W, Spaan  WJ, Snijder  EJ. Artevirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulation sequences. Proc Natl Acad Sci U S A. 1999;96:1205661. DOIPubMedGoogle Scholar

Main Article

Page created: April 24, 2012
Page updated: April 24, 2012
Page reviewed: April 24, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external