Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 3—March 2006
Research

Identifying and Quantifying Genotypes in Polyclonal Infections due to Single Species

James M. Colborn*, Ousmane Koita†, Ousmane Cissé†, Mamadou W. Bagayoko†, Edward J. Guthrie‡, and Donald J. Krogstad*Comments to Author 
Author affiliations: *Tulane University Health Sciences Center, New Orleans, Louisiana, USA; †University of Bamako, Bamako, Mali; ‡Agilent Technologies, Wilmington, Delaware, USA

Main Article

Table 4

Evidence for insertions, deletions, and repeats in human pathogens*

Pathogen Genomic site of variation Observed size variations Reference
Plasmodium falciparum Block 2 variable region of merozoite surface protein 1 (msp1), PCR 150–200 bp with multiple 9-bp insertions and deletions based on number of tripeptide repeats (14)
Dengue 3´ NCR after the NS5 stop codon 2–14 and 75-nt deletions, 4 copies of 8-nt imperfect repeat (16)
Yellow fever virus 3´ NCR 216-nt duplication, 40-nt deletion (repeat hairpin motif) (17)
HIV env gene 35- and 48-nt insertions, 21- and 36-nt deletions (18)
gp120 V3 and V4 loops 9- and 12-nt deletions (19)
Mycobacterium tuberculosis Novel IS6110 insertions† 36-bp DRs interspersed with variable spacers for DVRs (20)
VNTRs Repeating units of 53–79 bp with 16–17 copies (21)
Genomic deletions Based on genomic microarrays (21)
Bacillus anthracis MLVA† Variations of 12, 9, 18, 72, and 5 bp for MLVA markers vrrA, vrrB1, vrrB2, vrrC2, and CG3 (23)
Subtyping of 2001 bioterrorism organism All isolates were genotype 62 (24)
Yersinia pestis MLVA† with 25 markers for tandem repeat loci with 9–60 bp repeats of 3–36 units Amplicon sizes for complete alleles ranging from 119 to 786 bp (25)
Smallpox virus Coding regions of the viral genome Variable numbers of 9- and 21-bp repeats (n = 5–31 and 15–38, respectively), insertions of 32 and 464 bp and a 251-bp deletion (26)
Inverted terminal repeats between nonrepetitive elements 1 and 2 (NR1, NR2) 0–4 copies of a 69-bp sequence
Potential virulence proteins Smallpox inhibitor of complement enzymes, chemokine-binding protein II, and Z-DNA binding protein (27)

*PCR, polymerase chain reaction; NCR, noncoding region; DRs, direct repeats; DVRs, direct variant repeats; VNTRs, variable numbers tandem repeats; MLVA, multiple locus VNTR analysis; msp1, merozoite surface protein 1.
†Exists at multiple sites within the pathogen genome.

Main Article

References
  1. Janini  LM, Tanuri  A, Schechter  M, Pweralta  JM, Vicente  AC, Dela Torre  N, Horizontal and vertical transmission of human immunodeficiency virus type 1 dual infections caused by viruses of subtypes B and C. J Infect Dis. 1998;177:22731. DOIPubMedGoogle Scholar
  2. Rayfield  MA, Downing  RG, Baggs  J, Hu  DJ, Pieniazek  D, Luo  C-C, A molecular epidemiologic survey of HIV in Uganda. AIDS. 1998;12:5217. DOIPubMedGoogle Scholar
  3. Tuveri  R, Rothschild  C, Pol  S, Reijasse  D, Persico  T, Gazengel  C, Hepatitis C virus genotypes in French hemophiliacs: kinetics and reappraisal. J Med Virol. 1997;51:3641. DOIPubMedGoogle Scholar
  4. Walling  DW, Shebib  N, Weaver  SC, Nichols  CM, Flaitz  CM, Webster-Cyriaque  J. The molecular epidemiology and evolution of Epstein-Barr virus: sequence variation and genetic recombination in the latent membrane protein-1 gene. J Infect Dis. 1999;179:76374. DOIPubMedGoogle Scholar
  5. Loroño-Pino  MA, Cropp  CB, Farfán  JA, Vorndam  AV, Rodríguez-Angulo  EM, Rosado-Paredes  EP, Common occurrence of concurrent infections by multiple dengue virus serotypes. Am J Trop Med Hyg. 1999;61:72530.PubMedGoogle Scholar
  6. Warren  RM, Victor  TC, Streicher  EM, Richardson  M, Beyers  N, Gey van Pittius  N, Patients with active tuberculosis often have different strains in the same sputum specimen. Am J Respir Crit Care Med. 2004;169:6104. DOIPubMedGoogle Scholar
  7. Pavlic  M, Allerberger  F, Dierich  MP, Prodinger  WM. Simultaneous infection with two drug-susceptible Mycobacterium tuberculosis strains in an immunocompetent host. J Clin Microbiol. 1999;37:41567.PubMedGoogle Scholar
  8. Wittwer  CT, Herrmann  MG, Moss  AA, Rasmussen  RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques. 1997;22:1348.PubMedGoogle Scholar
  9. Halford  WP, Falco  VC, Gebhardt  BM, Carr  DJ. The inherent quantitative capacity of the reverse transcription-polymerase chain reaction. Anal Biochem. 1999;266:18191. DOIPubMedGoogle Scholar
  10. Trager  W, Jensen  JB. Human malaria parasites in continuous culture. Science. 1976;193:6735. DOIPubMedGoogle Scholar
  11. Campbell  CC, Collins  WE, Milhous  WK, Roberts  JM, Armstead  A. Adaptation of the Indochina I/CDC strain of Plasmodium falciparum to the squirrel monkey (Saimiri sciureus). Am J Trop Med Hyg. 1986;35:4725.PubMedGoogle Scholar
  12. Teklehaimanot  A, Nguyen-Dinh  P, Collins  WE, Barber  AM, Campbell  CC. Evaluation of sporontocidal compounds using gametocytes produced in vitro. Am J Trop Med Hyg. 1985;34:4294.PubMedGoogle Scholar
  13. del Portillo  HA, Nussenzweig  RS, Enea  V. Circumsporozoite gene of Plasmodium falciparum strain from Thailand. Mol Biochem Parasitol. 1987;24:2894. DOIPubMedGoogle Scholar
  14. Miller  LH, Roberts  T, Shahabuddin  M, McCutchan  TF. Analysis of sequence diversity in the P. falciparum merozoite surface protein-1 (MSP-1). Mol Biochem Parasitol. 1993;59:114. DOIPubMedGoogle Scholar
  15. Davis  CL, Field  D, Metzgar  D, Saiz  R, Morin  PA, Smith  IL, Numerous length polymorphisms at short tandem repeats in human cytomegalovirus. J Virol. 1999;73:626570.PubMedGoogle Scholar
  16. Shurtleff  AC, Beasley  DWC, Chen  JJY, Ni  H, Suderman  MT, Wang  H, Genetic variation in the 3´ non-coding region of dengue viruses. Virology. 2001;187:7587. DOIPubMedGoogle Scholar
  17. Bryant  JE, Vasconcelos  PFC, Rijnbrand  RCA, Mutebi  JP, Higgs  S, Barrett  ADT. Size heterogeneity in the 3´ noncoding region of South American isolates of yellow fever virus. J Virol. 2005;79:380721. DOIPubMedGoogle Scholar
  18. Starcich  BR, Hahn  BH, Shaw  G, McNeely  PD, Medrow  S, Wolf  H, Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell. 1986;45:63748. DOIPubMedGoogle Scholar
  19. Delwart  E, Magierowska  M, Royz  M, Foley  B, Peddada  L, Smith  R, Homogeneous quasispecies in 16 out of 17 individuals during very early HIV-1 primary infection. AIDS. 2002;16:18995. DOIPubMedGoogle Scholar
  20. Mokrousov  I, Narvaskaya  O, Limeschenko  E, Otten  T, Vyshnevskiy  B. Novel IS6110 insertion sites in the direct repeat locus of Mycobacterium tuberculosis clinical strains from the St. Petersburg area of Russia and evolutionary and epidemiological considerations. J Clin Microbiol. 2002;40:15047. DOIPubMedGoogle Scholar
  21. Frothingham  R, Meeker-O'Connell  WA. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology. 1998;144:118996. DOIPubMedGoogle Scholar
  22. de la Salmonière  Y-OLG, Kim  CC, Tsolaki  AG, Pym  AS, Siegrist  MS, Small  PM. High-throughput method for detecting genomic deletion polymorphisms. J Clin Microbiol. 2004;42:29138. DOIPubMedGoogle Scholar
  23. Gierczynski  R, Kaluzewski  S, Rakin  A, Jagielski  M, Zasada  A, Jakubczak  A, Intriguing diversity of Bacillus anthracis in eastern Poland—the molecular echoes of the past outbreaks. FEMS Microbiol Lett. 2004;239:23540. DOIPubMedGoogle Scholar
  24. Hoffmaster  AR, Fitzgerald  CC, Ribot  E, Mayer  LW, Popovic  T. Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. Emerg Infect Dis. 2002;8:11116.PubMedGoogle Scholar
  25. Pourcel  C, Andrè-Mazeaud  F, Neubauer  H, Ramisse  F, Vergnaud  G. Tandem repeats analysis for the high resolution phylogenetic analysis of Yersinia pestis. BMC Microbiol. 2004;4:22. DOIPubMedGoogle Scholar
  26. Massung  RF, Loparev  VN, Knight  JC, Totmenin  AV, Chizhikov  VE, Parsons  JM, Terminal region sequence variations in variola virus DNA. Virology. 1996;221:291300. DOIPubMedGoogle Scholar
  27. Massung  RF, Esposito  JJ, Liu  L-I, Qi  J, Utterback  TR, Knight  JC, Potential virulence determinants in terminal regions of variola smallpox virus genome. Nature. 1993;366:74851. DOIPubMedGoogle Scholar
  28. de la Puente-Redondo  VA, del Blanco  NG, Gutiérrez-Martín  CB, García-Peña  FJ, Rodriguez Ferri  EF. Comparison of different PCR approaches for typing of Franciscella tularensis strains. J Clin Microbiol. 2000;38:101622.PubMedGoogle Scholar
  29. Farlow  J, Smith  KL, Wong  J, Abrams  M, Lytle  M, Keim  P. Francisella tularensis strain typing using multiple-locus variable-number tandem repeat analysis. J Clin Microbiol. 2001;39:318692. DOIPubMedGoogle Scholar
  30. Nachamkin  I, Panaro  NJ, Li  M, Ung  H, Yuen  PK, Kricka  LJ, Agilent 2100 bioanalyzer for restriction fragment length polymorphism analysis of the Campylobacter jejuni flagellin gene. J Clin Microbiol. 2001;39:7547. DOIPubMedGoogle Scholar
  31. Snounou  G, Farnert  A. Genotyping of Plasmodium falciparum parasites by PCR: msp1, msp2 and glurp. In: Ljungström I, Perlmann H, Schlichtherle M, Scherf A, Washlgren M, editors. Methods in malaria research. 4th ed. Manassas (VA): Malaria Research and Reference Resource Center and American Type Culture; 2004. p. 221–5. Available from http://www.malaria.mr4.org/Protocol_Book/Methods_In_Malaria_Research.pdf
  32. Willmore  C, Holden  JA, Zhou  L, Tripp  S, Witwer  CT, Layfield  LJ. Detection of c-kit activating mutations in gastrointestinal stromal tumors by high-resolution amplicons melting analysis. Am J Clin Pathol. 2004;122:20616. DOIPubMedGoogle Scholar
  33. Ye  P, Parra  EJ, Sosnoski  DM, Hiester  K, Underhill  PA, Shriver  MD. Melting curve SNP (McSNP) genotyping: a useful approach for diallelic genotyping in forensic science. J Forensic Sci. 2002;47:593600.PubMedGoogle Scholar
  34. Witt  H, Landt  O. Rapid detection of the Wilson's disease H1069Q mutation by melting curve analysis with the LightCycler. Clin Chem Lab Med. 2001;39:9535. DOIPubMedGoogle Scholar
  35. Pals  G, Young  C, Mao  HS, Worsham  MJ. Detection of a single base substitution in a single cell using the LightCycler. J Biochem Biophys Methods. 2001;47:1219. DOIPubMedGoogle Scholar
  36. Hill  MD, Lorenzo  E, Kumar  A. Changes in the human immunodeficiency virus V3 region that correspond with disease progression: a meta-analysis. Virus Res. 2004;106:2733. DOIPubMedGoogle Scholar
  37. Daniels  RS, Wilson  P, Patel  D, Longhurst  H, Patterson  S, Analysis of full-length HIV type 1 env genes indicates differences between the virus infecting T cells and dendritic cells in peripheral blood of infected patients. AIDS Res Hum Retroviruses. 2004;20:40913. DOIPubMedGoogle Scholar
  38. Jensen  MA, van't Wout  AB. Predicting HIV-1 coreceptor usage with sequence analysis. AIDS Rev. 2003;5:10412.PubMedGoogle Scholar
  39. Zeuzem  S. Hepatitis C virus: kinetics and quasispecies evolution during anti-viral therapy. Forum. 2000;10:3242.PubMedGoogle Scholar
  40. Iwasa  Y, Michor  F, Nowak  MA. Virus evolution within patients increases pathogenicity. J Theor Biol. 2005;232:1726. DOIPubMedGoogle Scholar

Main Article

Page created: January 27, 2012
Page updated: January 27, 2012
Page reviewed: January 27, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external