Volume 12, Number 9—September 2006
Research
Differentiation of Tuberculosis Strains in a Population with Mainly Beijing-family Strains
Table 3
Locus | No. repeats |
HGDI | No. AV | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
MIRU 2 | 0 | 11 | 172 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0.151 | 4 |
MIRU 4 | 0 | 2 | 182 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0.053 | 3 |
MIRU 10 | 0 | 2 | 3 | 166 | 15 | 3 | 1 | 5 | 1 | 1 | 0.206 | 9 |
MIRU 16 | 0 | 24 | 7 | 156 | 0 | 0 | 0 | 0 | 0 | 0 | 0.288 | 3 |
MIRU 20 | 0 | 1 | 186 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.011 | 3 |
MIRU 23 | 0 | 2 | 0 | 0 | 0 | 173 | 9 | 3 | 0 | 0 | 0.142 | 4 |
MIRU 24 | 0 | 187 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
MIRU 26 | 0 | 7 | 0 | 2 | 11 | 122 | 5 | 40 | 0 | 0 | 0.526† | 6 |
MIRU 27 | 1 | 0 | 2 | 184 | 0 | 0 | 0 | 0 | 0 | 0 | 0.032 | 3 |
MIRU 31 | 0 | 1 | 20 | 31 | 7 | 124 | 4 | 0 | 0 | 0 | 0.522 | 6 |
MIRU 39 | 0 | 0 | 52 | 135 | 0 | 0 | 0 | 0 | 0 | 0 | 0.404 | 2 |
MIRU 40 | 2 | 3 | 7 | 147 | 14 | 13 | 1 | 0 | 0 | 0 | 0.372 | 7 |
ETR-A | 0 | 3 | 18 | 28 | 138 | 0 | 0 | 0 | 0 | 0 | 0.426 | 4 |
ETR-B | 0 | 0 | 187 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
ETR-C | 0 | 11 | 9 | 157 | 10 | 0 | 0 | 0 | 0 | 0 | 0.288 | 4 |
*N = 187; MIRU, mycobacterial interspersed repetitive units; ETR, exact tandem repeats; HGDI, Hunter-Gaston diversity index; AV, allelic variants.
†Boldface loci showed at least moderate discriminative power as defined by Sola et al. (23) and were the most promising loci. Other loci provided poor discrimination or were monomorphic.
References
- Raviglione MC. The TB epidemic from 1992 to 2002. Tuberculosis (Edinb). 2003;83:4–14. DOIPubMedGoogle Scholar
- Yerokhin VV, Punga VV, Rybka LN. Tuberculosis in Russia and the problem of multiple drug resistance. Ann N Y Acad Sci. 2001;953:133–7. DOIPubMedGoogle Scholar
- Shilova MV. Specific features of the spread of tuberculosis in Russia at the end of the 20th century. Ann N Y Acad Sci. 2001;953:124–32. DOIPubMedGoogle Scholar
- Drobniewski FA, Balabanova YM. The diagnosis and management of multiple-drug-resistant tuberculosis at the beginning of the new millennium. Int J Infect Dis. 2002;6(Suppl.1):S21–31. DOIPubMedGoogle Scholar
- UNAIDS. 2004 Report of the global AIDS epidemic. Geneva: UNAIDS; 2004.
- Drobniewski FA, Atun R, Fedorin I, Bikov A, Coker R. The "bear trap": the colliding epidemics of tuberculosis and HIV in Russia. Int J STD AIDS. 2004;15:641–6. DOIPubMedGoogle Scholar
- Drobniewski F, Balabanova Y, Ruddy M, Weldon L, Jeltkova K, Brown T, Rifampin- and multidrug-resistant tuberculosis in Russian civilians and prison inmates: dominance of the Beijing strain family. Emerg Infect Dis. 2002;8:1320–6.PubMedGoogle Scholar
- Toungoussova OS, Sandven P, Mariandyshev AO, Nizovtseva NI, Bjune G, Cougant DA. Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel oblast, Russia. J Clin Microbiol. 2002;40:1930–7. DOIPubMedGoogle Scholar
- van Soolingen D. Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med. 2001;249:1–26. DOIPubMedGoogle Scholar
- Braden CR, Crawford JT, Schable BA. Quality assessment of Mycobacterium tuberculosis genotyping in a large laboratory network. Emerg Infect Dis. 2002;8:1210–5.PubMedGoogle Scholar
- McHugh TD, Dickens A, Gillespie SH. False molecular clusters due to non-random association of IS6110 with Mycobacterium tuberculosis. J Clin Microbiol. 2000;38:2081–6.PubMedGoogle Scholar
- Kanduma E, McHugh TD, Gillespie SH. Molecular methods for Mycobacterium tuberculosis strain typing: a users guide. J Appl Microbiol. 2003;94:781–91. DOIPubMedGoogle Scholar
- Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis. 2002;8:843–9.PubMedGoogle Scholar
- Kremer K, Glynn JR, Lillebaek T, Niemann S, Kurepina N, Kreiswirth B, Definition of the Beijing/W Lineage of Mycobacterium tuberculosis on the Basis of Genetic Markers. J Clin Microbiol. 2004;42:4040–9. DOIPubMedGoogle Scholar
- Milan SJ, Hauge K, Kurepina N, Lofy K, Goldberg S, Narita M, Expanded geographical distribution of the N family of Mycobacterium tuberculosis strain within the United States. J Clin Microbiol. 2004;42:1064–8. DOIPubMedGoogle Scholar
- Sreevatsan S, Pan X, Stockbauer K, Connell N, Kreiswirth B, Whittam T, Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global transmission. Proc Natl Acad Sci U S A. 1997;94:9869–74. DOIPubMedGoogle Scholar
- Plikaytis BB, Marden J, Crawford J, Woodley C, Buter W, Shinnik T. Multiplex PCR assay specific for the multidrug-resistant strains W of Mycobacterium tuberculosis. J Clin Microbiol. 1994;32:1542–6.PubMedGoogle Scholar
- Drobniewski F, Balabanova Y, Nikolayevskyy V, Ruddy M, Kuznetzov S, Zakharova S, Drug-resistant TB, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA. 2005;293:2726–31. DOIPubMedGoogle Scholar
- Frothingham R, Meeker-O'Connell WA. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem repeats. Microbiology. 1998;144:1189–96. DOIPubMedGoogle Scholar
- Cowan LS, Mosher L, Diem L, Massey JP, Crawford JT. Variable-number tandem repeats typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J Clin Microbiol. 2002;40:1592–602. DOIPubMedGoogle Scholar
- Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol. 2000;36:762–71. DOIPubMedGoogle Scholar
- Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D, Locht C. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol. 2001;39:3563–71. DOIPubMedGoogle Scholar
- Sola C, Filliol I, Legrand E, Lesjean S, Locht C, Supply P, Genotyping of the Mycobacterium tuberculosis complex using MIRUs: association with VNTR and spoligotyping for molecular epidemiology and evolutionary genetics. Infect Genet Evol. 2003;3:125–33. DOIPubMedGoogle Scholar
- Roring S, Scott A, Brittain D, Walker I, Hewinson RG, Neill S, Development of variable-number tandem repeat typing of Mycobacterium bovis: comparison of results with those obtained by using existing exact tandem repeats and spoligotyping. J Clin Microbiol. 2002;40:2126–33. DOIPubMedGoogle Scholar
- Roring S, Scott AN, Hewinson RG, Neill SD, Skuce RA. Evaluation of variable number tandem repeat (VNTR) loci in molecular typing of Mycobacterium bovis isolates from Ireland. Vet Microbiol. 2004;101:65–73. DOIPubMedGoogle Scholar
- Le Flèche P, Fabre M, Denoeud F, Koeck J-L, Vergnaud G. High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol. 2002;2:37–48. DOIPubMedGoogle Scholar
- Skuce RA, McCorry TP, McCarroll JF, Roring SM, Scott AN, Brittain D, Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets. Microbiology. 2002;148:519–28.PubMedGoogle Scholar
- Ruddy M, Balabanova Y, Graham C, Fedorin I, Malomanova N, Elisarova E, Rates of drug resistance and risk factor analysis in civilian and prison patients with tuberculosis in Samara Region, Russia. Thorax. 2005;60:130–5. DOIPubMedGoogle Scholar
- Yates MD, Drobniewski FA, Wilson SM. Evaluation of a rapid PCR-based epidemiological typing method for routine studies of Mycobacterium tuberculosis. J Clin Microbiol. 2002;40:712–4. DOIPubMedGoogle Scholar
- Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.PubMedGoogle Scholar
- Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 1988;26:2465–6.PubMedGoogle Scholar
- Bifani P, Mathema B, Campo M, Moghazeh S, Nivin B, Shashkina E, Molecular identification of streptomycin monoresistant Mycobacterium tuberculosis related to multidrug resistant W strain. Emerg Infect Dis. 2001;7:842–8. DOIPubMedGoogle Scholar
- Mokrousov I, Narvskaya O, Limeschenko E, Otten T, Vyshnevskiy B. Novel IS6110 insertion sites in the direct repeat locus of Mycobacterium tuberculosis clinical strains from the St. Petersburg area of Russia and evolutionary and epidemiological considerations. J Clin Microbiol. 2002;40:1504–7. DOIPubMedGoogle Scholar
- Mokrousov I, Narvskaya O, Limeschenko E, Vyazovaya A, Otten T, Vyshnevskiy B. Analysis of the allelic diversity of the mycobacterial interspersed repetitive units in Mycobacterium tuberculosis strains of the Beijing family: practical implications and evolutionary considerations. J Clin Microbiol. 2004;42:2438–44. DOIPubMedGoogle Scholar
- Hawkey PM, Smith EG, Evans JT, Monk P, Bryan G, Mohamed HH, Mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis compared to IS6110-based restriction fragment length polymorphism analysis for the investigation of apparently clustered cases of tuberculosis. J Clin Microbiol. 2003;41:3514–20. DOIPubMedGoogle Scholar
- Sun Y-J, Bellamy R, Lee AS, Ng ST, Ravindran S, Wong S-Y, Use of mycobacterial interspersed repetitive unit-variable-number tandem repeat typing to examine genetic diversity of Mycobacterium tuberculosis in Singapore. J Clin Microbiol. 2004;42:1986–93. DOIPubMedGoogle Scholar
- Cole ST, Brosch R, Parkhill J. 39 other authors. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–44. DOIPubMedGoogle Scholar
Page created: November 17, 2011
Page updated: November 17, 2011
Page reviewed: November 17, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.