Volume 12, Number 9—September 2006
Research
Differentiation of Tuberculosis Strains in a Population with Mainly Beijing-family Strains
Table A1
Markers |
Primer sequences |
|||||||
---|---|---|---|---|---|---|---|---|
H37Rv locus name | MIRU system† (1,2) | ETR system (3) | Mtub system (4) | QUB system (5,6) | Forward | Reverse | Label | |
1 | 0154 | MIRU2† | 5´-CAG GTG CCC TAT CTG CTG ACG-3´ | 5´-GTT GCG TCC GGC ATA CCA AC-3´ | Dye 3 | |||
2 | 0424 | Mtub4 | 5´-CCG CCC TGG TCG TCT GGA-3´ | 5´-CGG CAT CCT CAA CAA CGG TAG C-3´ | Dye 3 | |||
3 | 0531 | MPTR-A | 5´-CTG CCG AGG CCC GCG TTG ATT GT-3´ | 5´-GAC GTG GCG GCG ATG GCT GGT TA-3´ | Dye 2 | |||
4 | 0577 | ETR-C‡ | 5´-GTG AGT CGC TGC AGA ACC TGC AG-3´ | 5´-GGC GTC TTG ACC TCC ACG AGT G-3´ | Dye 3 | |||
4 | 0580 | MIRU4 | EDR-D | 5´-GTC AAA CAG GTC ACA ACG AGA GGA A-3´ | 5´-CCT CCA CAA TCA ACA CAC TGG TCA T-3´ | Dye 3 | ||
5 | 0802 | MIRU40 | 5´-GAT TCC AAC AAG ACG CAG ATC AAG A-3´ | 5´-TCA GGT CTT TCT CTC ACG CTC TCG-3´ | Dye 3 | |||
6 | 0959 | MIRU10 | 5´-ACC GTC TTA TCG GAC TGC ACT ATC AA-3´ | 5´-CAC CTT GGT GAT CAG CTA CCT CGA T-3´ | Dye 4 | |||
7 | 1644 | MIRU16 | 5´-CGG GTC CAG TCC AAC TAC CTC AAT-3´ | 5´-GAT CCT CCT GAT TGC CCT GAC CTA-3´ | Dye 2 | |||
8 | 1955 | Mtub21 | 5´-TGT CGA GTT CAC CGT CCA TCA TCT-3´ | 5´-CCG ACG CCA ATA GCA CAG CAC CAG-3´ | Dye 4 | |||
9 | 1982 | QUB-18 | 5´-GGA ATG GCT ACG GAA GGA ATA CTC-3´ | 5´-TTA CGA CAC CTG ATC TGA CTC TGC- 3´ | Dye 2 | |||
10 | 2059 | MIRU20 | 5´-CCC CTT CGA GTT AGT ATC GTC GGT T-3´ | 5´-CAA TCA CCG TTA CAT CGA CGT CAT C-3´ | Dye 2 | |||
11 | 2074 | Mtub24 | 5´-CGC GAG GAC GAG GTG GAG AA-3´ | 5´-ACA ATT GCA GCC AGA GAT GAG ACG-3´ | Dye 4 | |||
12 | 2163a | QUB-11a | 5´-CCC GGG GCG CTC GTG ATG- 3´ | 5´-CGG CGG CAC CCT GGA GTC TGG-3´ | Dye 4 | |||
13 | 2165 | ETR-A‡ | 5´-AAA TCG GTC CCA TCA CCT TCT TAT-3´ | 5´-CGA AGC CTG GGG TGC CCG CGA TTT-3´ | Dye 2 | |||
14 | 2387 | MIRU24 | 5´-GAA GGC TAT CCG TCG ATC GGT T-3´ | 5´-GGG CGA GTT GAG CTC ACA GAA C-3´ | Dye 3 | |||
15 | 2461 | ETR-B‡ | 5´-GCG AAC ACC AGG ACA GCA TCA TG-3´ | 5´-GGC ATG CCG GTG ATC GAG TGG-3´ | Dye 4 | |||
16 | 2531 | MIRU23 | 5´-CGA ATT CTT CGG TGG TCT CGA GT-3´ | 5´-ACC GTC TGA CTC ATG GTG TCC AA-3´ | Dye 4 | |||
17 | 2996 | MIRU26 | 5´-GCG GAT AGG TCT ACC GTC GAA ATC-3´ | 5´-TCC GGG TCA TAC AGC ATG ATC A-3´ | Dye 4 | |||
18 | 3006 | MIRU27 | QUB-5 | 5´-TCT GCT TGC CAG TAA GAG CCA-3´ | 5´-GTG ATG GTG ACT TCG GTG CCT T-3´ | Dye 4 | ||
19 | 3192 | MIRU31 | ETR-E | 5´-CGT CGA AGA GAG CCT CAT CAA TCA T-3´ | 5´-AAC CTG CTG ACC GAT GGC AAT ATC-3´ | Dye 3 | ||
20 | 3232 | QUB-3232 | 5´-CAC TAG TTG TTG CGG CGA TGG T-3´ | 5´-AAG GGC GGC ATT GTG TTC C-3´ | Dye 3 | |||
21 | 3239 | ETR-F | 5´-GAC TTC GGG CAG CTC GGG CAT CC-3´ | 5´-CCG CGG TGG TTG TCG TGA TG-3´ | Dye 2 | |||
22 | 3336 | QUB-3336 | 5´-GAT CGG GTG CAG TGG TTT CAG GTG-3´ | 5´-GGG CGG CCA GCG GTG TC-3´ | Dye 3 | |||
23 | 3690 | Mtub39 | 5´-CGA GGA TCA CGA TGC GGG TCA C-3´ | 5´-GGC GGG GGC TCG GGT GGT A-3´ | Dye 4 | |||
24 | 4348 | MIRU39 | 5´-CGG TCA AGT TCA GCA CCT TCT ACA TC-3´ | 5´-GCG TCC GTA CTT CCG GTT CAG-3´ | Dye 2 |
References
- Raviglione MC. The TB epidemic from 1992 to 2002. Tuberculosis (Edinb). 2003;83:4–14. DOIPubMedGoogle Scholar
- Yerokhin VV, Punga VV, Rybka LN. Tuberculosis in Russia and the problem of multiple drug resistance. Ann N Y Acad Sci. 2001;953:133–7. DOIPubMedGoogle Scholar
- Shilova MV. Specific features of the spread of tuberculosis in Russia at the end of the 20th century. Ann N Y Acad Sci. 2001;953:124–32. DOIPubMedGoogle Scholar
- Drobniewski FA, Balabanova YM. The diagnosis and management of multiple-drug-resistant tuberculosis at the beginning of the new millennium. Int J Infect Dis. 2002;6(Suppl.1):S21–31. DOIPubMedGoogle Scholar
- UNAIDS. 2004 Report of the global AIDS epidemic. Geneva: UNAIDS; 2004.
- Drobniewski FA, Atun R, Fedorin I, Bikov A, Coker R. The "bear trap": the colliding epidemics of tuberculosis and HIV in Russia. Int J STD AIDS. 2004;15:641–6. DOIPubMedGoogle Scholar
- Drobniewski F, Balabanova Y, Ruddy M, Weldon L, Jeltkova K, Brown T, Rifampin- and multidrug-resistant tuberculosis in Russian civilians and prison inmates: dominance of the Beijing strain family. Emerg Infect Dis. 2002;8:1320–6.PubMedGoogle Scholar
- Toungoussova OS, Sandven P, Mariandyshev AO, Nizovtseva NI, Bjune G, Cougant DA. Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel oblast, Russia. J Clin Microbiol. 2002;40:1930–7. DOIPubMedGoogle Scholar
- van Soolingen D. Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med. 2001;249:1–26. DOIPubMedGoogle Scholar
- Braden CR, Crawford JT, Schable BA. Quality assessment of Mycobacterium tuberculosis genotyping in a large laboratory network. Emerg Infect Dis. 2002;8:1210–5.PubMedGoogle Scholar
- McHugh TD, Dickens A, Gillespie SH. False molecular clusters due to non-random association of IS6110 with Mycobacterium tuberculosis. J Clin Microbiol. 2000;38:2081–6.PubMedGoogle Scholar
- Kanduma E, McHugh TD, Gillespie SH. Molecular methods for Mycobacterium tuberculosis strain typing: a users guide. J Appl Microbiol. 2003;94:781–91. DOIPubMedGoogle Scholar
- Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis. 2002;8:843–9.PubMedGoogle Scholar
- Kremer K, Glynn JR, Lillebaek T, Niemann S, Kurepina N, Kreiswirth B, Definition of the Beijing/W Lineage of Mycobacterium tuberculosis on the Basis of Genetic Markers. J Clin Microbiol. 2004;42:4040–9. DOIPubMedGoogle Scholar
- Milan SJ, Hauge K, Kurepina N, Lofy K, Goldberg S, Narita M, Expanded geographical distribution of the N family of Mycobacterium tuberculosis strain within the United States. J Clin Microbiol. 2004;42:1064–8. DOIPubMedGoogle Scholar
- Sreevatsan S, Pan X, Stockbauer K, Connell N, Kreiswirth B, Whittam T, Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global transmission. Proc Natl Acad Sci U S A. 1997;94:9869–74. DOIPubMedGoogle Scholar
- Plikaytis BB, Marden J, Crawford J, Woodley C, Buter W, Shinnik T. Multiplex PCR assay specific for the multidrug-resistant strains W of Mycobacterium tuberculosis. J Clin Microbiol. 1994;32:1542–6.PubMedGoogle Scholar
- Drobniewski F, Balabanova Y, Nikolayevskyy V, Ruddy M, Kuznetzov S, Zakharova S, Drug-resistant TB, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA. 2005;293:2726–31. DOIPubMedGoogle Scholar
- Frothingham R, Meeker-O'Connell WA. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem repeats. Microbiology. 1998;144:1189–96. DOIPubMedGoogle Scholar
- Cowan LS, Mosher L, Diem L, Massey JP, Crawford JT. Variable-number tandem repeats typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J Clin Microbiol. 2002;40:1592–602. DOIPubMedGoogle Scholar
- Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C. Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol. 2000;36:762–71. DOIPubMedGoogle Scholar
- Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D, Locht C. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol. 2001;39:3563–71. DOIPubMedGoogle Scholar
- Sola C, Filliol I, Legrand E, Lesjean S, Locht C, Supply P, Genotyping of the Mycobacterium tuberculosis complex using MIRUs: association with VNTR and spoligotyping for molecular epidemiology and evolutionary genetics. Infect Genet Evol. 2003;3:125–33. DOIPubMedGoogle Scholar
- Roring S, Scott A, Brittain D, Walker I, Hewinson RG, Neill S, Development of variable-number tandem repeat typing of Mycobacterium bovis: comparison of results with those obtained by using existing exact tandem repeats and spoligotyping. J Clin Microbiol. 2002;40:2126–33. DOIPubMedGoogle Scholar
- Roring S, Scott AN, Hewinson RG, Neill SD, Skuce RA. Evaluation of variable number tandem repeat (VNTR) loci in molecular typing of Mycobacterium bovis isolates from Ireland. Vet Microbiol. 2004;101:65–73. DOIPubMedGoogle Scholar
- Le Flèche P, Fabre M, Denoeud F, Koeck J-L, Vergnaud G. High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol. 2002;2:37–48. DOIPubMedGoogle Scholar
- Skuce RA, McCorry TP, McCarroll JF, Roring SM, Scott AN, Brittain D, Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets. Microbiology. 2002;148:519–28.PubMedGoogle Scholar
- Ruddy M, Balabanova Y, Graham C, Fedorin I, Malomanova N, Elisarova E, Rates of drug resistance and risk factor analysis in civilian and prison patients with tuberculosis in Samara Region, Russia. Thorax. 2005;60:130–5. DOIPubMedGoogle Scholar
- Yates MD, Drobniewski FA, Wilson SM. Evaluation of a rapid PCR-based epidemiological typing method for routine studies of Mycobacterium tuberculosis. J Clin Microbiol. 2002;40:712–4. DOIPubMedGoogle Scholar
- Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:907–14.PubMedGoogle Scholar
- Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 1988;26:2465–6.PubMedGoogle Scholar
- Bifani P, Mathema B, Campo M, Moghazeh S, Nivin B, Shashkina E, Molecular identification of streptomycin monoresistant Mycobacterium tuberculosis related to multidrug resistant W strain. Emerg Infect Dis. 2001;7:842–8. DOIPubMedGoogle Scholar
- Mokrousov I, Narvskaya O, Limeschenko E, Otten T, Vyshnevskiy B. Novel IS6110 insertion sites in the direct repeat locus of Mycobacterium tuberculosis clinical strains from the St. Petersburg area of Russia and evolutionary and epidemiological considerations. J Clin Microbiol. 2002;40:1504–7. DOIPubMedGoogle Scholar
- Mokrousov I, Narvskaya O, Limeschenko E, Vyazovaya A, Otten T, Vyshnevskiy B. Analysis of the allelic diversity of the mycobacterial interspersed repetitive units in Mycobacterium tuberculosis strains of the Beijing family: practical implications and evolutionary considerations. J Clin Microbiol. 2004;42:2438–44. DOIPubMedGoogle Scholar
- Hawkey PM, Smith EG, Evans JT, Monk P, Bryan G, Mohamed HH, Mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis compared to IS6110-based restriction fragment length polymorphism analysis for the investigation of apparently clustered cases of tuberculosis. J Clin Microbiol. 2003;41:3514–20. DOIPubMedGoogle Scholar
- Sun Y-J, Bellamy R, Lee AS, Ng ST, Ravindran S, Wong S-Y, Use of mycobacterial interspersed repetitive unit-variable-number tandem repeat typing to examine genetic diversity of Mycobacterium tuberculosis in Singapore. J Clin Microbiol. 2004;42:1986–93. DOIPubMedGoogle Scholar
- Cole ST, Brosch R, Parkhill J. 39 other authors. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537–44. DOIPubMedGoogle Scholar
Page created: November 17, 2011
Page updated: November 17, 2011
Page reviewed: November 17, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.