Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 13, Number 11—November 2007

Methicillin-Resistant Staphylococcus aureus in Meat Products, the Netherlands

Article Metrics
citations of this article
EID Journal Metrics on Scopus
Inge H.M. van Loo*, Bram M.W. Diederen*, Paul H.M. Savelkoul†, Joyce H.C. Woudenberg†, Robert Roosendaal†, Alex van Belkum‡, Nicole Lemmens-den Toom‡, Carlo Verhulst§, Peter H.J. van Keulen§, and Jan Kluytmans†§Comments to Author 
Author affiliations: *St. Elisabeth Hospital, Tilburg, the Netherlands; †VUmc Medical University, Amsterdam, the Netherlands; ‡Erasmus Medical Center, Rotterdam, the Netherlands; §Amphia Hospital, Breda, the Netherlands;

Cite This Article


A new methicillin-resistant Staphylococcus aureus (MRSA) clone related to pig and cattle farming was detected in the Netherlands. We investigated the extent of S. aureus presence in meat and found 36 S. aureus strains in 79 samples. Two strains were MRSA; 1 was multilocus sequence type 398, the clone related to farming.

In 2003 a new clone of methicillin-resistant Staphylococcus aureus (MRSA) related to pig and cattle farming emerged in the Netherlands (1,2). A survey of pigs showed that nearly 40% carried this clone (3). Detecting this strain was relatively easy with pulsed-field gel electrophoresis (PFGE) since it is nontypable (NT), the method used for surveillance of MRSA at the National Reference Centre for MRSA (National Institute of Public Health and the Environment, Bilthoven, the Netherlands). Further typing of NT-MRSA showed that almost all strains belonged to 1 multilocus sequence typing cluster, ST 398 (2). We undertook this study to determine to what extent S. aureus, and more specifically, MRSA, was present in Dutch meat products.

The Study

Samples of various meat products from pigs and cattle, obtained from local supermarkets and butcher shops, were examined for contamination with methicillin-susceptible S. aureus (MSSA) and MRSA. A total of 79 raw meat products (pork, n = 64; beef, n = 15) were collected from 31 different shops (butcher shops, n = 5; supermarkets, n = 26) from February through May 2006. Table 1 shows how many samples were investigated per shop. A small portion of the meat products (mean 7.9 g, SD 3.97) was plated directly onto chromogenic agar for the detection of MRSA (MRSA ID; bioMérieux, La-Balme-les-Grottes, France). All sides of the meat portion were streaked over a part of the agar plate, and from this inoculated area, the material was spread by using a sterile loop. The piece of meat was then put into 5-mL enrichment broth containing Mueller-Hinton broth and 6.5% NaCl. After 24-h incubation at 35°C, the enrichment broth was subcultured on Columbia agar plates with 5% sheep’s blood (CA), a MRSA-ID plate, and 1 mL of the enrichment broth was put into a second enrichment broth containing phenol-red mannitol broth with ceftizoxime (5 μg/mL) and aztreonam (7.5 μg/mL) (Regional Public Health Laboratory, Groningen, the Netherlands). The second enrichment broth was subcultured on CA and MRSA-ID. All plates were incubated for 48 h at 35°C. Presumptive S. aureus colonies were confirmed with a latex agglutination test (Staphaurex Plus; Murex Diagnostics Ltd, Dartford, UK), a tube coagulase test with rabbit plasma, and DNase (DNase agar; Oxoid Ltd, Basingstoke, UK). Confirmation of methicillin resistance and S. aureus species identification was performed by an in-house–developed, validated duplex real-time PCR for the mecA gene and the S. aureus–specific 442-bp fragment described by Martineau et al. (4; P.H.M. Savelkoul and A.M.C. Bergmans, pers. comm.). Susceptibility to cefoxitin and doxycycline was determined by using disk diffusion according to the Clinical Laboratory Standards Institute (formerly National Committee for Clinical Laboratory Standards) standards (5). All isolated S. aureus strains (MSSA and MRSA) were genotyped by amplified fragment gel electrophoresis (AFLP) (6). Spa types were defined according to the procedure previously described by Harmsen et al. (7).

Direct inoculation of plates yielded no MRSA-positive isolates (Table 2). The first enrichment broth yielded S. aureus from 30 positive meat samples, 25 pork and 5 beef. In 1 pork sample, 2 phenotypically different S. aureus isolates were found. One S. aureus isolate in pork meat was identified as MRSA. When the double-enrichment broth culture system was added, another 6 samples were S. aureus positive, 1 of which contained MRSA. Combining the results of both enrichment broth culture procedures, 34 samples were positive, harboring 36 phenotypically different S. aureus isolates (Table 2). Twenty-seven (42.2%) pork samples and 5 (33.3%) beef samples harbored S. aureus. Two pork samples yielded 2 phenotypically different S. aureus isolates. Two isolates from pork (2.5% of total samples) were found to be methicillin resistant. A total of 19 shops (61.3%) had at least 1 positive meat sample.


Thumbnail of Amplified fragment gel electrophoresis typing and spa typing results of the Staphylococcus aureus isolates, methicillin susceptible (MSSA) and methicillin resistant (MRSA), in pork and beef. The boxes indicate clonally related strains. The columns indicate the strain number, the shop where the sample was bought, the origin of the sample, methicillin susceptibility, and spa type. ATCC, American Type Culture Collection; ND, not determined.

Figure. Amplified fragment gel electrophoresis typing and spa typing results of the Staphylococcus aureus isolates, methicillin susceptible (MSSA) and methicillin resistant (MRSA), in pork and beef. The boxes indicate clonally related strains....

AFLP typing showed 8 genetic lineages, covering 72.2% (26/36) of the isolated strains and a smaller number of unique sporadic isolates 27.8% (10/36) (Figure). Spa typing showed that in 6 of these genetic lineages, 1 spa type was identified, and in 1 lineage, 2 closely related spa types were identified (Figure).

From the 2 samples that contained 2 phenotypically different strains, the 2 strains from 1 sample (TY4376 and TY4378) belonged to the same lineage, and the other sample contained 2 strains (TY4367 and TY4368) belonging to 2 different genetic lineages. In 5 (83.3%) of 6 shops in which >1 S. aureus isolate was found, typing showed clonal relationship among strains originating from the same shops (Figure).

PFGE typing of the 2 MRSA isolates showed that 1 MRSA isolate (TY4390) was nontypable by SmaI digestion and identical to isolates found in pigs (TY4400 and TY4433). This strain harbored spa type 108, which resembled the spa types of the pig and farmer strains (034 and 011, respectively) (13). These strains belong to a separate cluster in the AFLP analysis (Figure). The other MRSA isolate was identical to the US300 clone (TY 4381) and harbored spa type 024.


To our knowledge, this is the first survey investigating the presence of MSSA and MRSA in meat products in the Netherlands. Two meat samples (2.5%) contained MRSA. Furthermore, S. aureus is found regularly in low amounts in meat sold to consumers. The prevalence of S. aureus in meat products was found to be 4%, 22.7%, and 65% in 3 other studies performed in Egypt, Switzerland, and Japan, respectively (810).

Contamination of the meat products could be traced back to certain abattoirs in Switzerland and poor hygienic and sanitary conditions in Egypt (10,11). The high rate of clonal relatedness of different strains within particular shops indicates cross-contamination of the meat at some point during processing. Therefore, the strain in the sample is not necessarily indicative of the strain that was carried by the animal at the source.

This study demonstrates that MRSA has entered the food chain. As the amounts were very low, the pathogen is not likely to cause disease, especially if meat is properly prepared before consumption. However, contamination of food products may be a potential threat for the acquisition of MRSA by those who handle the food. Also, a large hospital outbreak with MRSA due to contamination of food products has been described (11). This occurred in a hospital ward in Erasmus Medical Center in Rotterdam, the Netherlands. In this outbreak, an immunocompromised patient was probably infected by ingestion of MRSA-contaminated food, and subsequently, severe sepsis developed and the patient died. Also, an outbreak of foodborne illness caused by MRSA has been described (12). However, this exotoxin-mediated disease is not dependent on the methicillin susceptibility of the causative S. aureus strain.

All reports of MRSA in meat products described previously dealt with MRSA of human origin that was contaminating the meat. In this report, the NT-MRSA in the meat was associated with farming and is most likely of animal origin. Although the pig-related MRSA strain was found in only 1 product and in very low amounts, this finding does show that MRSA has made its way into the food chain.

Dr van Loo is a medical microbiologist at the Academic Medical Center, Maastricht, the Netherlands. His research interests include the application of new technology to routine microbiology.



We thank X. Huijsdens for database comparison of the spa typing results.



  1. Voss  A, Loeffen  F, Bakker  J, Klaassen  C, Wulf  M. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis. 2005;11:19656.PubMedGoogle Scholar
  2. van Loo  IHM, Tiemersma  E, Huijsdens  XW, De Neeling  AJ, Beaujean  D, Kluytmans  JAJW. Emergence of methicillin resistant Staphylococcus aureus of animal origin in the human population. In: Program and abstracts of the 12th International Symposium on Staphylococci and Staphylococcal Infections; 2006 Sep 3–6; Maastricht, the Netherlands. Abstract 168.
  3. De Neeling  AJ, Van den Broek  MJM, Spalburg  EC, Van Santen-Verheuvel  MG, Dam-Deisz  W, Boshuizen  HC, High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol. 2007;122:36672. DOIPubMedGoogle Scholar
  4. Martineau  F, Picard  FJ, Roy  PH, Ouellette  M, Bergeron  MG. Species-specific and ubiquitous-DNA–based assays for rapid identification of Staphylococcus aureus. J Clin Microbiol. 1998;36:61823.PubMedGoogle Scholar
  5. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. Wayne (PA): The Committee; 2006.
  6. Mohammadi  T, Reesink  HW, Pietersz  RNI, Vandenbroucke-Grauls  CM, Savelkoul  PHM. Amplified-fragment length polymorphism analysis of Propionibacterium isolates implicated in contamination of blood products. Br J Haematol. 2005;131:4039. DOIPubMedGoogle Scholar
  7. Harmsen  D, Claus  H, Witte  W, Rothgaenger  J, Claus  H, Turnwald  D, Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting using a novel software for spa-repeat determination and database management. J Clin Microbiol. 2003;41:54428. DOIPubMedGoogle Scholar
  8. Bakr  WM, Fawzi  M, Hashish  MH. Detection of coagulase positive staphylococci in meat products sold in Alexandria using two different media. J Egypt Public Health Assoc. 2004;79:3142.PubMedGoogle Scholar
  9. Schraft  H, Kleinlein  N, Untermann  F. Contamination of pig hindquarters with Staphylococcus aureus. Int J Food Microbiol. 1992;15:1914. DOIPubMedGoogle Scholar
  10. Kitai  S, Shimizu  A, Kawano  J, Sato  E, Nakano  C, Kitagawa  H, Prevalence and characterization of Staphylococcus aureus and enterotoxigenic Staphylococcus aureus in retail raw chicken meat throughout Japan. J Vet Med Sci. 2005;67:26974. DOIPubMedGoogle Scholar
  11. Kluytmans  J, Van Leeuwen  W, Goessens  W, Hollis  R, Messer  S, Herwaldt  L, Food-initiated outbreak of methicillin-resistant Staphylococcus aureus analyzed by pheno- and genotyping. J Clin Microbiol. 1995;33:11218.PubMedGoogle Scholar
  12. Jones  TF, Kellum  ME, Porter  SS, Bell  MM, Schaffner  W. An outbreak of community-acquired foodborne illness caused by methicillin-resistant Staphylococcus aureus. Emerg Infect Dis. 2002;8:824. DOIPubMedGoogle Scholar




Cite This Article

DOI: 10.3201/eid1311.070358

Table of Contents – Volume 13, Number 11—November 2007

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Jan A.J.W. Kluytmans, Amphia Hospital, Breda Laboratory for Microbiology and Infection Control, PO Box 90158 4800 RK Breda, the Netherlands;

Send To

10000 character(s) remaining.


Page created: July 05, 2010
Page updated: July 05, 2010
Page reviewed: July 05, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.