Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 13, Number 12—December 2007
Perspective

Need for Improved Methods to Collect and Present Spatial Epidemiologic Data for Vectorborne Diseases

Lars Eisen*Comments to Author  and Rebecca J. Eisen†
Author affiliations: *Colorado State University, Fort Collins, Colorado, USA; †Centers for Disease Control and Prevention, Fort Collins, Colorado, USA

Main Article

Figure 1

Areas predicted by a model based on peridomestically acquired plague cases from 1957 through 2004 to pose high risk to humans in the Four Corners Region (Arizona, Colorado, New Mexico, and Utah) are depicted in light gray. Those high-risk areas on privately or tribally owned land are shown in dark gray. Black circles represent locations of peridomestically acquired human plague cases. States comprising the Four Corners Region are shown within the United States in the inset. Reprinted with permission of the Journal of Medical Entomology from Eisen et al. (9).

Figure 1. Areas predicted by a model based on peridomestically acquired plague cases from 1957 through 2004 to pose high risk to humans in the Four Corners Region (Arizona, Colorado, New Mexico, and Utah) are depicted in light gray. Those high-risk areas on privately or tribally owned land are shown in dark gray. Black circles represent locations of peridomestically acquired human plague cases. States comprising the Four Corners Region are shown within the United States in the inset. Reprinted with permission of the Journal of Medical Entomology from Eisen et al. (9).

Main Article

References
  1. Brownstein  JS, Rosen  H, Purdy  D, Miller  JR, Merlino  M, Mostashari  F, Spatial analysis of West Nile virus: rapid risk assessment of an introduced vector-borne zoonosis. Vector Borne Zoonotic Dis. 2002;2:15764. DOIPubMedGoogle Scholar
  2. Brownstein  JS, Holford  TR, Fish  D. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect. 2003;111:11527.PubMedGoogle Scholar
  3. Bunnell  JE, Price  SD, Das  A, Shields  TM, Glass  GE. Geographic information systems and spatial analysis of adult Ixodes scapularis (Acari: Ixodidae) in the middle Atlantic region of the USA. J Med Entomol. 2003;40:5706. DOIPubMedGoogle Scholar
  4. Dennis  DT, Nekomoto  TS, Victor  JC, Paul  WS, Piesman  J. Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J Med Entomol. 1998;35:62938.PubMedGoogle Scholar
  5. Diuk-Wasser  MA, Brown  HE, Andreadis  TG, Fish  D. Modeling the spatial distribution of mosquito vectors for West Nile virus in Connecticut, USA. Vector Borne Zoonotic Dis. 2006;6:28395. DOIPubMedGoogle Scholar
  6. Eisen  RJ, Eisen  L, Castro  MB, Lane  RS. Environmentally related variability in risk of exposure to Lyme disease spirochetes in northern California: effect of climatic conditions and habitat type. Environ Entomol. 2003;32:10108. DOIGoogle Scholar
  7. Eisen  RJ, Eisen  L, Lane  RS. Predicting density of Ixodes pacificus nymphs in dense woodlands in Mendocino County, California, based on geographic information systems and remote sensing versus field-derived data. Am J Trop Med Hyg. 2006;74:63240.PubMedGoogle Scholar
  8. Eisen  RJ, Lane  RS, Fritz  CL, Eisen  L. Spatial patterns of Lyme disease risk in California based on disease incidence data and modeling of vector-tick exposure. Am J Trop Med Hyg. 2006;75:66976.PubMedGoogle Scholar
  9. Eisen  RJ, Enscore  RE, Biggerstaff  BJ, Reynolds  PJ, Ettestad  P, Brown  T, Human plague in the southwestern United States, 1957–2004: spatial models of elevated risk of human exposure to Yersinia pestis. J Med Entomol. 2007;44:5307. DOIPubMedGoogle Scholar
  10. Guerra  M, Walker  E, Jones  C, Paskewitz  S, Cortinas  MR, Stancil  A, Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north-central United States. Emerg Infect Dis. 2002;8:28997. DOIPubMedGoogle Scholar
  11. Kitron  U, Kazmierczak  JJ. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol. 1997;145:55866.PubMedGoogle Scholar
  12. Nicholson  MC, Mather  TN. Methods for evaluating Lyme disease risks using geographic information systems and geospatial analysis. J Med Entomol. 1996;33:71120.PubMedGoogle Scholar
  13. Reeves  WC, Hammon  WM, Longshore  WA Jr, McClure  H, Geib  AF. Epidemiology of the arthropod-borne virus encephalitides in Kern County, California, 1943–1952. University of California Publications in Public Health. 1962;4:1257.
  14. Reisen  WK, Lothrop  HD, Presser  SB, Milby  MM, Hardy  JL, Wargo  MJ, Landscape ecology of arboviruses in southern California: temporal and spatial patterns of vector and virus activity in Coachella valley, 1990–1992. J Med Entomol. 1995;32:25566.PubMedGoogle Scholar
  15. Ruiz  MO, Tedesco  C, McTighe  TJ, Austin  C, Kitron  U. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. Int J Health Geogr. 2004;3:8. DOIPubMedGoogle Scholar
  16. Yabsley  MJ, Wimberly  MC, Stallknecht  DE, Little  SE, Davidson  WR. Spatial analysis of the distribution of Ehrlichia chaffeensis, causative agent of human monocytotropic ehrlichiosis, across a multi-state region. Am J Trop Med Hyg. 2005;72:84050.PubMedGoogle Scholar
  17. Gage  KL, Ostfeld  RS, Olson  JG. Nonviral vector-borne zoonoses associated with mammals in the United States. J Mammal. 1995;76:695715. DOIGoogle Scholar
  18. Gage  KL, Kosoy  MY. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol. 2005;50:50528. DOIPubMedGoogle Scholar
  19. Kitron  U. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol. 1998;35:43545.PubMedGoogle Scholar
  20. Peterson  AT. Ecologic niche modeling and spatial patterns of disease transmission. Emerg Infect Dis. 2006;12:18226.PubMedGoogle Scholar
  21. Wilson  ML. Distribution and abundance of Ixodes scapularis (Acari: Ixodidae) in North America: ecological processes and spatial analysis. J Med Entomol. 1998;35:44657.PubMedGoogle Scholar
  22. Tälleklint-Eisen  L, Lane  RS. Spatial and temporal variation in the density of Ixodes pacificus (Acari: Ixodidae) nymphs. Environ Entomol. 2000;29:27280. DOIGoogle Scholar
  23. Clover  JR, Lane  RS. Evidence implicating nymphal Ixodes pacificus (Acari: Ixodidae) in the epidemiology of Lyme disease in California. Am J Trop Med Hyg. 1995;53:23740.PubMedGoogle Scholar
  24. Baker  M. The altitudinal distribution of mosquito larvae in the Colorado Front Range. Trans Am Entomol Soc. 1961;87:23146.
  25. Bolling  BG, Moore  CG, Anderson  SL, Blair  CD, Beaty  BJ. Entomological studies along the Colorado Front Range during a period of intense West Nile virus activity. J Am Mosq Control Assoc. 2007;23:3746. DOIPubMedGoogle Scholar
  26. Reeves  WC, Hardy  JL, Reisen  WK, Milby  MM. Potential effect of global warming on mosquito-borne arboviruses. J Med Entomol. 1994;31:32332.PubMedGoogle Scholar
  27. Wegbreit  J, Reisen  WK. Relationships among weather, mosquito abundance, and encephalitis virus activity in California: Kern County 1990–98. J Am Mosq Control Assoc. 2000;16:227.PubMedGoogle Scholar
  28. Zou  L, Miller  SN, Schmidtmann  ET. Mosquito larval habitat mapping using remote sensing and GIS: implications of coalbed methane development and West Nile virus. J Med Entomol. 2006;43:103441. DOIPubMedGoogle Scholar
  29. Barnes  AM. Surveillance and control of bubonic plague in the United States. Symposium of the Zoological Society of London. 1982;50:237–70.
  30. Eisen  RJ, Bearden  SW, Wilder  AP, Montenieri  JA, Antolin  MF, Gage  KL. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci U S A. 2006;103:153805. DOIPubMedGoogle Scholar
  31. Wieczorek  J, Guo  Q, Hijmans  R. The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Int J Geogr Inf Sci. 2004;18:74567. DOIGoogle Scholar
  32. Walker  DH. Tick-transmitted infectious diseases in the United States. Annu Rev Public Health. 1998;19:23769. DOIPubMedGoogle Scholar
  33. Hayes  EB, Piesman  J. How can we prevent Lyme disease? N Engl J Med. 2003;348:242430. DOIPubMedGoogle Scholar
  34. Mann  JM, Martone  WJ, Boyce  JM, Kaufmann  AF, Barnes  AM, Weber  NS. Endemic human plague in New Mexico: risk factors associated with infection. J Infect Dis. 1979;140:397401.PubMedGoogle Scholar
  35. Gage  KL. Plague surveillance. In: Dennis DT, Gage KL, Grantz N, Poland PD, Tikhomirov E, editors. Plague manual: epidemiology, distribution, surveillance, and control. Geneva: World Health Organization; 1999. p. 135–65.
  36. Levy  CE, Gage  KL. Plague in the United States, 1995–1997. Infect Med. 1999;16:5464.
  37. Grubesic  TH, Matisziw  TC. On the use of ZIP codes and ZIP code tabulation areas (ZCTAs) for the spatial analysis of epidemiological data. Int J Health Geogr. 2006;5:5872. DOIPubMedGoogle Scholar

Main Article

Page created: July 06, 2010
Page updated: July 06, 2010
Page reviewed: July 06, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external