Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 13, Number 5—May 2007
Letter

Salmonella Typhimurium in Hihi, New Zealand

On This Page
Article Metrics
28
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: The recent finding of a previously unrecorded Salmonella strain in an endangered New Zealand passerine (the hihi, Notiomystis cincta; [1]) offers the rare opportunity to observe the initial arrival and pathology of an epizootic and to determine its population-level effect. Over 8 days in February 2006, 6 freshly dead hihi were discovered in a free-living island population. Pathologic findings were similar: birds were in good body condition with substantial subcutaneous fat reserves and no gross lesions in the crop, indicating death from a highly pathogenic disease. Histopathologic examination showed septicemia and inflammatory necrosis of organs, particularly the liver and spleen, typical of salmonellosis in birds (2). Microbiologic examination of liver samples isolated heavy growths of the bacterium Salmonella enterica serotype Typhimurium DT195. During the same period, 3 more dead hihi were found, but they were too decomposed for postmortem examination.

Hihi are nectar-feeders that declined to near extinction after European colonization of New Zealand and survived on a single island refuge (Hauturu). Since 1980, 14 attempts have been made to reintroduce the species to 6 other sites, resulting in 3 new populations that persist with management. The S. Typhimurium DT195 outbreak occurred within a reintroduced population on Tiritiri Matangi Island. Management includes providing supplementary food (sugar water) diluted with local rain water; feeders are sterilized before each use.

Because disease in hihi is closely monitored, the outbreak indicates that S. Typhimurium DT195 is a novel serotype for this species. During December 2005, fecal screening of 18 broods (37 nestlings) from Tiritiri Matagni Island found no evidence of enteric pathogens; screenings in February and May 2005 (40 adult and juvenile birds) from Tiritiri Matagni Island similarly returned negative results. Screening in all hihi populations during 2004 also found no evidence of Salmonella infection (32 adults and juveniles at Tiritiri Matangi, 29 at Hauturu, and 27 at Kapiti), and a 15-year pathology database from 230 dead hihi collected across these populations and a captive breeding facility lists no salmonellosis cases (J.G. Ewen and M.R. Alley, unpub. data).

Documentation of the emergent stages of infectious disease in endangered species is rare (3,4). This bacterium strain is absent from New Zealand’s livestock and wildlife (www.surv.esr.cri.nz/enteric_reference/nonhuman_salmonella.php). Nontyphoid Salmonella spp. are a major health concern worldwide (5), and New Zealand conducts intensive surveillance to maintain food safety. The New Zealand Wildlife Health Centre has not reported S. Typhimurium DT195 despite necropsies of >3,000 wild birds during 1996–2006, which suggests this strain is rare in New Zealand, despite its presence in other countries (6).

S. Typhimurium DT195 has been detected in 3 human patients in New Zealand (1 each in 2002, 2003, and 2006). The S. Typhimurium DT195 isolated from hihi in the February 2006 outbreak were indistinguishable from those isolated from the human case-patient in 2006 (Figure, panel A) (2). Tiritiri Matangi is an isolated island nature reserve 3 km off the New Zealand coast, which prevents movement of hihi to other areas. How this strain appeared in a human patient and as an epizootic in an isolated island nature reserve is intriguing. The most recent human case was diagnosed on the North Island of New Zealand, but the person was not living in close proximity to the birds. Tiritiri Matangi receives ≈30,000 human visitors per year, but whether the person with S. Typhimurium DT195 ever visited is not known. An unidentified infection source may be present in New Zealand that periodically spills over into alternate host species. Given their historic isolation, hihi may have low or no exposure to many diseases, which makes negative reactions more likely (7).

[[AA:F1:PREVIEWHTML]]

The transmission of S. Typhimurium DT195 to hihi caused a substantial drop in their population (Figure). The 9 bodies recovered represent a small proportion of the birds that died, given the difficulty of recovering dead birds (8). We used mark–recapture analysis (9) to estimate that adult survival probability was 0.64 (95% confidence interval [CI] 0.53–0.74) from September 2005 through February 2006, compared with an expected survival of 0.87 (95% CI 0.85–0.89), according to data from the previous 10 years (data not shown). The quotient of these 2 probabilities is 0.74 (95% CI 0.60–0.84); hence, we can infer that ≈26% of birds were killed by the epizootic.

With such high virulence, fade-out may occur as susceptible individuals are rapidly removed from the population (10). Subsequent monitoring has failed to detect further evidence of S. Typhimurium DT195. This apparent fade-out mirrors classic predictions from epidemiology (10). It is unknown whether the pathogen resides in resistant hihi or whether threats from the unknown source remain.

The key issues for endangered species management are identifying the risk of pathogens entering a host population and the probability that this occurrence would result in host extinction (3). The 2006 salmonellosis outbreak in hihi could easily have remained undetected, leaving conservation managers unaware of what caused the population decline. How often this occurs in poorly monitored wildlife is unknown. This study shows the need for increased awareness of these processes when considering biodiversity conservation.

Top

Acknowledgments

The authors thank Richard Griffiths, Tamara Henry, the hihi recovery group, and the New Zealand Department of Conservation for their support of the project. This letter was improved through discussion with Peter Bennett, Claudia Carraro, and Becki Lawson and by comments from a reviewer.

J.G.E. was supported by an Institute of Zoology Research Fellowship, Royal Society Grant, British Ecological Society Grant, and Massey University.

Top

John G. Ewen*Comments to Author , Rose Thorogood†, Carolyn Nicol‡, Doug P. Armstrong§, and Maurice Alley§
Author affiliations: *Institute of Zoology, Zoological Society of London, London, United Kingdom; †University of Cambridge, Cambridge, United Kingdom; ‡Institute of Environmental Science and Research, Porirua, Wellington, New Zealand; §Massey University, Palmerston North, New Zealand;

Top

References

  1. Ewen JG, Flux I, Ericson P. Systematic affinities of two enigmatic New Zealand passerines of high conservation priority, the hihi or stitchbird Notiomystis cincta and the kokako Callaeas cinerea.Mol Phylogenet Evol. 2006;40:2814. DOIPubMedGoogle Scholar
  2. Alley MR, Connolly JH, Fenwick SG, Mackereth GF, Leyland MJ, Rogers LE, An epidemic of salmonellosis caused by Salmonella Typhimurium DT160 in wild birds and humans in New Zealand.N Z Vet J. 2002;50:1706.PubMedGoogle Scholar
  3. Cleaveland GR, Hess GR, Dobson AP, Laurenson MK, McCallum HI, Roberts MG, The role of pathogens in biological conservation. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP, editors. The ecology of wildlife diseases. Oxford (UK): Oxford University Press; 2002. p. 139–50.
  4. McCallum H, Dobson A. Detecting disease and parasite threats to endangered species and ecosystems.Trends Ecol Evol. 1995;10:1904. DOIGoogle Scholar
  5. Tirado C, Schmidt K. WHO surveillance programme for control of foodborne infections and intoxications: preliminary results and trends across greater Europe. World Health Organization.J Infect. 2001;43:804.PubMedGoogle Scholar
  6. Pennycott TW, Park A, Mather HA. Isolation of different serovars of Salmonella enterica from wild birds in Great Britain between 1995 and 2003.Vet Rec. 2006;158:81720.PubMedGoogle Scholar
  7. Cunningham AA. Disease risks of wildlife translocations.Conserv Biol. 1996;10:34953. DOIGoogle Scholar
  8. Philibert H, Wobeser G, Clark RG. Counting dead birds: examination of methods. J Wild Dis. 1993;29:284–9. PMID number is 8487379.
  9. White GC, Burnham KP. Program MARK: survival estimation from populations of marked animals.Bird Study. 1999;46(Suppl):12038.
  10. Swinton J, Woolhouse MEJ, Begon ME, Dobson AP, Ferroglio E, Grenfell BT, Microparasite transmission and persistence. In: Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP, editors. The ecology of wildlife diseases. Oxford (UK): Oxford University Press; 2002. p. 83–101.

Top

Cite This Article

DOI: 10.3201/eid1305.060824

Related Links

Top

Table of Contents – Volume 13, Number 5—May 2007

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

John G. Ewen, Institute of Zoology, Zoological Society of London, Regents Park, NW1 4RY, London, UK;

Send To

10000 character(s) remaining.

Top

Page created: June 25, 2010
Page updated: June 25, 2010
Page reviewed: June 25, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external