Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 13, Number 9—September 2007

TaqMan Assay for Swedish Chlamydia trachomatis Variant

On This Page
Article Metrics
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: Chlamydia trachomatis (CT) is the most prevalent bacterial sexually transmitted infection worldwide. Recently, a new variant of CT (swCT) has been reported in Halland County, Sweden. A total of 12 swCT specimens were sequenced and found to have the same deletion, a 377-bp deletion in the cryptic plasmid (1). Because the deletion was found in the target area of 2 commercial CT nucleic acid amplification tests (Roche, Basel, Switzerland, and Abbott Laboratories, Abbott Park, IL, USA), screening tests have produced false-negative results for patients infected with this new Swedish variant (1). In specific regions of Sweden, the proportion of all detected CT cases attributable to swCT ranges from 13% to 39%; a considerable number of chlamydia infections have escaped detection by commonly used test systems (1).

Although the first 2 studies to monitor potential spread of the swCT variant outside Sweden (Ireland and the Netherlands) did not detect swCT, a third study (Norway) did identify this variant (24). Subsequently, the European Surveillance of Sexually Transmitted Infections network and the European Center for Disease Prevention and Control launched an initiative, consisting of a short questionnaire, to learn more about this swCT variant problem outside Sweden (5).

However, quick monitoring of the spread of the swCT variant has been hampered by lack of a direct test to detect this swCT variant and by lack of a readily available positive control. We therefore constructed a positive control by using a clinical specimen of the swCT variant in which the deletion was present (forward swCT 5′-TCC GGA TAG TGA ATT ATA GAG ACT ATT TAA TC-3′ reverse swCT 5′GGT GTT TGT ACT AGA GGA CTT ACC TCT TC-3′) (2). The specimen was obtained in Sweden (by B.H.) and confirmed as swCT by the method described by Ripa and Nilsson (6). The obtained 98-bp amplicon was subsequently cloned in a pGEM-T Easy Vector (Promega Benelux b.v., Leiden, the Netherlands) and transformed in Escherichia coli DH5α. After extraction the plasmid was verified for the correct insert by sequencing and quantified as described (7). This positive control is available for researchers and clinicians free of charge.

Subsequently, we developed a real-time PCR (TaqMan assay) that specifically detects the swCt variant by using a probe that spans the 377-bp left and right gap border sequences: probe- swCT 5′-FAM GGA TCC GTT TGT TCT GG MGB -3′. One copy of cloned positive swCT control could be detected in our swCT assay. We selected 10 copies per PCR as positive swCT control for each run. A total of 239 recent samples known to be CT positive and identified with techniques detecting the swCT variant were retrospectively analyzed with our new swCT real-time PCR for 3 cohorts: 1) 30 real-time PCR CT-positive clinical samples (CT prevalence in the population, 1.8%) from the Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands; 2) 57 Becton Dickinson (Franklin Lakes, NJ, USA) CT-positive samples (CT prevalence in the sexually transmitted disease population, 7.3%) from the Department of Infectious Diseases, South Limburg Public Health Service, Heerlen, the Netherlands; and 3) 152 CT-positive culture samples (CT prevalence in the population, average 15% [8]) from the Faculty of Medicine, St. Petersburg State University, St. Petersburg, Russia, and from the Laboratory of Microbiology, D.O. Ott Research Institute of Obstetrics and Gynaecology, St. Petersburg, Russia.

Cohort 1 consisted of cervical swabs in 2-sucrose-phosphate (2SP) transport medium, stored at –80°C. Cohort 2 consisted of frozen dry swabs that had been shaken for 10 s in 1 mL 2SP transport medium before sample preparation. Cohort 3 consisted of positive cultured samples. DNA extraction used 200 μL 2SP and was performed with the NucliSens easyMAG (bioMérieux, Boxtel, the Netherlands); the DNA was eluted in 110 μL 2SP (7). Presence of CT DNA was reconfirmed for all samples with our in-house PCR. Sensitivity of this assay was determined by using a previously described serial dilution of lymphogranuloma venereum (LGV) strain L2 and was assessed at 0.01 inclusion-forming units (9). Amplification and detection were performed with an ABI Prism 7000 sequence detection system (Applied Biosystems, Foster City, CA, USA) by standard PCR conditions of the manufacturer, with 45 cycles. The Swedish variant was found in none of the 3 cohorts tested. Sensitivity and specificity were confirmed by using 12 swCT variant samples from Sweden, which were all positive according to our swCT TaqMan assay.

Our new swCT TaqMan assay, combined with the positive control (which can be obtained by contacting S.M.), will be a helpful tool for determining whether this Swedish CT variant is present outside Sweden, other than in the 2 case-patients identified in Norway. We did not find any evidence of the swCT variant in the Netherlands or St. Petersburg, Russia, each of which is near Scandinavia (Table). Recently, the C. trachomatis LGV strain was discovered in the Netherlands in a population of men who have sex with men. In this instance, the real-time TaqMan assay also proved helpful in determining spread (10).


Arnold Catsburg*1, Laura van Dommelen†1, Vitaly Smelov‡§, Henry J.C. de Vries¶#, Alevtina Savitcheva‡, Marius Domeika**, Björn Herrmann††, Sander Ouburg*, Christian J.P.A. Hoebe‡‡, Anders Nilsson††, Paul H.M. Savelkoul*, and Servaas A. Morré*†§§Comments to Author 
Author affiliations: *VU University Medical Center, Amsterdam, the Netherlands; †Academic Hospital Maastricht, Maastricht, the Netherlands; ‡D.O. Ott Research Institute of Obstetrics and Gynaecology, St. Petersburg, Russia; §St. Petersburg State University, St. Petersburg, Russia; ¶Health Service Amsterdam, Amsterdam, the Netherlands; #University of Amsterdam, Amsterdam, the Netherlands; **Uppsala University, Uppsala, Sweden; ††Uppsala University Hospital, Uppsala, Sweden; ‡‡South Limburg Public Health Service, Heerlen, the Netherlands; §§City of Hope and Beckman Research Institute, Duarte, California, USA;



  1. Soderblom  T, Blaxhult  A, Fredlund  H, Herrmann  B. Impact of a genetic variant of Chlamydia trachomatis on national detection rates in Sweden. Euro Surveill. 2006;11:E061207.1.
  2. de Vries  HJC, Catsburg  A, van der Helm  JJ, Beukelaar  EC, Morré  SA, Fennema  JSA, No indication of Swedish Chlamydia trachomatis variant among STI clinic visitors in Amsterdam. Euro Surveill. 2007;12:E070208.3.
  3. Lynagh  Y, Crowley  B, Walsh  A. Investigation to determine if newly-discovered variant of Chlamydia trachomatis is present in Ireland. Euro Surveill. 2007;12:E070201.2.
  4. Moghaddam  A, Reinton  N. Identification of the Swedish Chlamydia trachomatis variant among patients attending a STI clinic in Oslo, Norway. Euro Surveill. 2007;12:E070301.3.
  5. de Laar  V, Ison  C. Europe-wide investigation to assess the presence of new variant of Chlamydia trachomatis in Europe. Euro Surveill. 2007;12:E070208.4.
  6. Ripa  T, Nilsson  PA. A Chlamydia trachomatis strain with a 377-bp deletion in the cryptic plasmid causing false-negative nucleic acid amplification tests. Sex Transm Dis. 2007;34:2556.PubMedGoogle Scholar
  7. Catsburg  A, van der Zwet  WC, Morré  SA, Ouburg  S, Vandenbroucke-Grauls  CM, Savelkoul  PH. Analysis of multiple single nucleotide polymorphisms (SNP) on DNA traces from plasma and dried blood samples. J Immunol Methods. 2007;321:13541. DOIPubMedGoogle Scholar
  8. Savitcheva  A, Smirnova  T, Pavlova  N, Bashmakova  M, Shishkina  O, Novikov  B, Diagnosis and treatment of genital Chlamydia trachomatis infection in St. Petersburg and Leningradskaya Oblastj. In: Domeika M., Hallen A., editors. Chlamydia trachomatis infection in Eastern Europe. Uppsala (Sweden): Uppsala University; 2000.
  9. Morré  SA, Sillekens  P, Jacobs  MV, van Aarle  P, de Blok  S, van Gemen  B, RNA amplification by nucleic acid sequence-based amplification with an internal standard enables reliable detection of Chlamydia trachomatis in cervical scrapings and urine samples. J Clin Microbiol. 1996;34:310814.PubMedGoogle Scholar
  10. Morré  SA, Spaargaren  J, Fennema  JSA, de Vries  HJC, Peña  AS. Real-time PCR for the rapid one-step diagnosis of Chlamydia trachomatis LGV infection to help manage and contain the current outbreak in Europe and the USA. Emerg Infect Dis. 2005;11:13112.PubMedGoogle Scholar




Cite This Article

DOI: 10.3201/eid1309.070263

1These authors contributed equally to the study.

Related Links


Table of Contents – Volume 13, Number 9—September 2007

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Servaas A. Morré, Department of Pathology, Laboratory of Immunogenetics, Section Immunogenetics of Infectious Diseases, VU University Medical Center, Amsterdam, the Netherlands;

Send To

10000 character(s) remaining.


Page created: July 06, 2010
Page updated: July 06, 2010
Page reviewed: July 06, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.