Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 14, Number 10—October 2008
Letter

Confirmed Mycoplasma pneumoniae Endocarditis

On This Page
Article Metrics
15
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: In Rosario, Argentina, during June 2005, a 15-year-old boy was hospitalized because of a 2-month history of fever. The patient had no history of cardiac disease or intravenous drug use. The results of the physical examination and the laboratory tests were within normal limits, except for an increased leukocyte count (14,000/µL) with 68% neutrophils.

Transesophagic echocardiography showed mural vegetation on the right ventricle (30 mm × 20 mm) with no valve involvement. The patient was empirically treated with penicillin, gentamicin, and ceftriaxone. After treatment failed to produce a response, blood was submitted for culture for mycobacteria, brucellae, bartonellae, molds, and yeasts. BacT/ALERT bottles (bioMérieux, Durham, NC, USA), Hemoline performance biphasic medium (bioMérieux, Marcy L’Etoile, France), lysis centrifugation, and homemade culture broth were used. All culture results were negative. Results of PCR performed on serum for Actinobacillus actinomycetemcomitans were also negative. Because only the first samples were obtained before antimicrobial drug administration, a false-negative result was suspected. The patient underwent surgery for pulmonary microembolisms, and the vegetation was removed 4 weeks after drug treatment had started. The histologic appearance of the vegetation was consistent with infectious endocarditis, but the culture result was negative.

After 6 weeks of treatment, the patient was discharged from the hospital; however, 10 days after discharge he again became febrile and was readmitted to the hospital. The vegetation was again found. On this second admission, all cultures were performed before administration of antimicrobial drugs, and several types of culture media were used. In the absence of any growth by day 6, the patient’s serum was screened for antibodies to Mycoplasma pneumoniae, Chlamydia pneumoniae, and Bartonella henselae. Serologic tests for immunoglobulin (Ig) G and IgM were conducted by indirect immunofluorescence assay (slides from Bion; Des Plaines, IL, USA) and fluorescein-labeled anti-human IgG and IgM (bioMérieux). For the IgM assay, the serum was pretreated with IgG/RF stripper (The Binding Site Ltd., Birmingham, UK). The titers for M. pneumoniae IgG and IgM antibodies were 2,048 and 160, respectively. Blood cultures were then subcultured in homemade Hayflick medium. These samples were incubated in 5% CO2 in a 37°C incubator and examined 2×/week for typical M. pneumoniae colonies.

After 9 days of incubation, Hayflick agar plates inoculated with aliquots taken from homemade blood culture bottles (beef extract 5 g, yeast extract 5 g, peptone 10 g, glucose 2 g, NaCl 5 g, Na2HPO4 2.5 g, sodium heparin 10,000 U, distilled water to 1,000 mL, pH 7.6) showed colonies consistent with M. pneumoniae. No isolates were recovered from commercial blood culture bottles.

Result of hemolysis test with sheep blood was positive. The isolate was definitively identified as M. pneumoniae after P1 cytadhesin gene amplification by nested PCR, with primers P1-40, P1-178, P1-285, and P1-331 (1).

After mycoplasma were was isolated, intravenous clarithromycin was added to ceftriaxone; the ceftriaxone was discontinued 1 week later. The patient’s clinical condition improved, and he was discharged 3 weeks after bacteriologic diagnosis with a treatment regimen of oral levofloxacin. After 6 months of treatment, the vegetation was reduced with no evidence of calcification.

Mycoplasma spp. have rarely been associated with endocarditis; until 2007, reports of only 8 cases had been published (28). The patient described herein had no underlying medical problems or immunodeficiency. Results of lymphocyte subsets, immunoglobulin titers, response to tetanus toxoid, and pneumococcal capsular polysaccharide were within reference ranges.

Cases of culture-negative endocarditis are not routinely investigated for mycoplasmas; however, the role of these microorganisms as a cause of endocarditis might be underestimated. Mycoplasma spp. cannot be detected by Gram stain and are difficult to isolate in bacteriologic culture media. Commercial blood culture broths that use sodium polyanetholsulfonate as an anticlotting agent are not suitable for growing these microorganisms (9). Other diagnostic approaches include the detection of specific DNA sequences or the use of broad-range eubacterial primers in cardiac tissue (6). In the patient reported here, the clinical sample (vegetation) was not available for diagnostic M. pneumoniae gene amplification. We failed to detect M. pneumoniae by PCR-mediated gene amplification directly from whole blood and plasma. Theoretically, specific PCR should be more sensitive than culture, as shown in respiratory specimens, but to date attempts to detect M. pneumoniae in blood by PCR have not been successful. The bacterial load in blood may have been too low to detect the amplified product by ethidium bromide–stained gel electrophoresis. The larger volume of blood used and the preincubation in broth with yeast extract for 7 days could have improved the recovery by culture. Another cause of reduced PCR sensitivity may have been the use of frozen samples.

This case of endocarditis caused by M. pneumoniae was confirmed by culture and occurred in a patient with no previous heart disease. Further studies are needed to evaluate the real incidence of M. pneumoniae as a cause of endocarditis as well as the occurrence of mycoplasma bacteremia in the absence of underlying infection of the endocardium.

Top

Acknowledgment

We thank Héctor R. Morbidoni for critical reading of this manuscript and Paola Gallo for English revisions.

Top

Juan Pablo ScapiniComments to Author , Luis Pedro Flynn, Silvia Sciacaluga, Lorena Morales, and María Estela Cadario
Author affiliations: Facultad de Ciencias Médicas Universidad Nacional de Rosario, Santa Fe, Argentina (J.P. Scapini); Sanatorio de Niños Rosario, Santa Fe, (L.P. Flynn S. Sciacaluga, L. Morales); Instituto Nacional de Enfermedades Infecciosas ANLIS “Dr Carlos Malbrán,” Buenos Aires, Argentina (M.E. Cadario);

Top

References

  1. Talkington  DF, Thacker  WL, Keller  DW, Jensen  JS. Diagnosis of Mycoplasma pneumoniae infection in autopsy and open-lung biopsy tissues by nested PCR. J Clin Microbiol. 1998;36:11513.PubMedGoogle Scholar
  2. Blasco  M, Torres  L, Marco  ML, Moles  B, Villuendas  MC, García Moya  JB. Prosthetic valve endocarditis caused by Mycoplasma hominis. Eur J Clin Microbiol Infect Dis. 2000;19:63840. DOIPubMedGoogle Scholar
  3. Cohen  JI, Sloss  LJ, Kundsin  R, Golightly  L. Prosthetic valve endocarditis caused by Mycoplasma hominis. Am J Med. 1989;86:81921. DOIPubMedGoogle Scholar
  4. DiSesa  VJ, Sloss  LJ, Cohn  LH. Heart transplantation for intractable prosthetic valve endocarditis. J Heart Transplant. 1990;9:1423.PubMedGoogle Scholar
  5. Dominguez  SR, Littlehorn  C, Nyquist  AC. Mycoplasma hominis endocarditis in a child with a complex congenital heart defect. Pediatr Infect Dis J. 2006;25:8512. DOIPubMedGoogle Scholar
  6. Fenollar  F, Gauduchon  V, Casalta  JP, Lepidi  H, Vandenesch  F, Raoult  D. Mycoplasma endocarditis: two case reports and a review. Clin Infect Dis. 2004;38:e214. DOIPubMedGoogle Scholar
  7. Hidalgo-Tenorio  C, Pasquau  J, López-Checa  S, López-Ruz  MA. Endocarditis due to Mycoplasma hominis [in Spanish]. Enferm Infecc Microbiol Clin. 2006;24:4701. DOIPubMedGoogle Scholar
  8. Popat  K, Barnardo  D, Webb-Peploe  M. Mycoplasma pneumoniae endocarditis. Br Heart J. 1980;44:1112. DOIPubMedGoogle Scholar
  9. Brouqui  P, Raoult  D. Endocarditis due to rare and fastidious bacteria. Clin Microbiol Rev. 2001;14:177206. DOIPubMedGoogle Scholar

Top

Cite This Article

DOI: 10.3201/eid1410.080157

Related Links

Top

Table of Contents – Volume 14, Number 10—October 2008

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Juan Pablo Scapini, Instituto de Investigaciones Microbiológicas y Clínicas, Entre Ríos 340, 2000, Rosario, Santa Fe, Argentina;

Send To

10000 character(s) remaining.

Top

Page created: July 13, 2010
Page updated: July 13, 2010
Page reviewed: July 13, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external