Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 14, Number 3—March 2008

KI and WU Polyomaviruses in Children, France

On This Page
Article Metrics
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: Two new members of the Polyomaviridae family, provisionally named Karolinska Institutet virus (KIPyV) and Washington University virus (WUPyV), have been recently discovered (1,2). These new polyomaviruses were identified by screening human respiratory secretions with molecular tools. KIPyV and WUPyV are genetically related to the BK virus and the JC virus, the 2 known members of the family Polyomaviridae that affect humans.

In France, from November 2006 through June 2007, nasopharyngeal aspirates were obtained from 537 children who were <5 years of age and who had acute respiratory tract disease. The aspirates were tested for respiratory syncytial virus (RSV); influenza virus types A and B; parainfluenza virus types 1, 2, and 3; and adenoviruses (AdVs) by direct immunofluorescence assay. The aspirates were also tested for human metapneumovirus (HMPV) by an enzyme immunoassay (HMPV EIA, Biotrin, Lyon, France) and for the human bocavirus (HBoV) by PCR (3). Samples were placed on MRC5 cell monolayers for virus isolation.

Nucleic acid extracts were tested for KIPyV and WUPyV DNA by PCR. KIPyV detection was performed by using a nested PCR approach that targeted the VP1 capsid gene as described by Allander et al. (1). For WUPyV detection, primers targeted the predicted 3′ end of the large T antigen coding region as described by Gaynor et al. (2). The amplification specificity was assessed by sequencing the PCR product; sequences were deposited in GenBank (WUPyV isolates, accession no. AM778536–48; KIPyV isolates, accession no. AM849808–10).

At least 1 type of virus was identified for 271 (50.5%) children. The viruses found were RSVs in 175 (32.6%), HBoVs in 54 (10.0%), HMPVs in 50 (9.3%), rhinoviruses/enteroviruses in 11 (2%), influenza A viruses in 8 (1.5%), human AdVs in 6 (1.1%), and parainfluenza type 3 viruses in 4 (0.7%) samples. Aspirates were not tested for coronaviruses; detection of rhinoviruses/enteroviruses was likely low because cell culture is less sensitive than molecular assays.

A total of 13 (2.4%) samples were positive for WUPyV; of these 4 (30.8%) were co-infected with another virus. The 13 children with samples positive for WUPyV had a median age of 11.2 (2–48) months and the male/female sex ratio was 2.2. KIPyV DNA was detected in samples from 3 (0.6%) boys (ages 10, 18 and 30 months); 1 of those samples was co-infected with RSV and HMPV.

Sequences of WUPyV and KIPyV isolates varied little from each other and from other GenBank sequences, which suggests that these polyomaviruses are genetically conserved viruses. Clinical characteristics of children infected with WUPyV and KIPyV are retrospectively recorded (Table). All children recovered and were able to return home within 1 to 10 days, with the exception of 1 child. This child had been hospitalized since birth for congenital myopathy; nosocomial acquisition or vertical transmission of the WUPyV is suspected.

Our data are in agreement with the 2 original reports that show that the new KI and WU polyomaviruses may be detected in respiratory secretions from patients with respiratory diseases (1,2). WUPyV was detected in 2.4% of children <5 years of age who were hospitalized with respiratory tract disease, which is in accordance with the 2% incidence reported by Gaynor et al. (2). The 0.6% prevalence observed for KIPyV PCR is also in agreement with data reported from Sweden (1) and Australia (4). A seasonal change in the presence of WUPyV was not observed; however, all KIPyV isolates were found only during January.

KIPyV and WUPyV were mainly detected in samples from children with lower respiratory tract disease, such as bronchiolitis or atypical pneumonia, and in samples from children with exacerbated asthma. These preliminary data on the likely role of these viruses as respiratory pathogens need to be interpreted with caution. Aspirates were obtained only from those with observed symptoms; no asymptomatic controls were tested. Detection of WUPyV and KIPyV in respiratory samples may simply reflect a respiratory transmission route as previously suggested for BK virus and JC virus (5). Another virus was in aspirates from 31% of the children with KI and WU polyomaviruses. Substantial rates of codetection were also reported in the initial descriptions of both WUPyV and KIPyV (1,2). More recently, Bialasiewicz et al. reported a 25% rate of codetection of KIPyV with another pathogen (4). These high rates of co-infection raise questions about the real pathogenic role of these viruses.

As with other polyomaviruses, WUPyV and KIPyV could establish persistent and latent infections with likely asymptomatic reactivations (5), and detection of these viruses could also reflect a long-term shedding from previous acute episode. Recently published studies have not shown a pathogenic role for these new polyomaviruses in respiratory tract disease (6,7); however, more comprehensive studies are needed to elucidate whether both KIPyV and WUPyV have any clinical relevance.


Vincent Foulongne*Comments to Author , Natalie Brieu*, Eric Jeziorski*, Amandine Chatain*, Michel Rodière*, and Michel Segondy*
Author affiliations: *Montpellier University Hospital, Montpellier, France;



  1. Allander  T, Andreasson  K, Gupta  S, Bjerkner  A, Bogdanovic  G, Persson  MAA, Identification of a third polyomavirus. J Virol. 2007;81:41306. DOIPubMedGoogle Scholar
  2. Gaynor  AM, Nissen  MD, Whiley  DM, Mackay  IA, Lambert  SB, Wu  G, Identification of a novel polyomavirus from patients with acute respiratory tract infections. PloS Pathog. 2007;3:e64. DOIPubMedGoogle Scholar
  3. Foulongne  V, Olejnik  Y, Elaertz  S, Perez  V, Rodière  M, Segondy  M. Human bocavirus in French children. Emerg Infect Dis. 2006;12:12513. PubMedGoogle Scholar
  4. Bialasiewicz  S, Whiley  DM, Lambert  SB, Wang  D, Nissen  MD, Sloots  TP. A newly reported human polyomavirus, KI virus, is present in the respiratory tract of Australian children. J Clin Virol. 2007;40:158. DOIPubMedGoogle Scholar
  5. Randhawa  P, Vats  A, Shapiro  R. The pathobiology of polyomavirus infection in man. Adv Exp Med Biol. 2006;577:14859. PubMedGoogle Scholar
  6. Abed  Y, Wang  D, Boivin  G. WU polyomavirus in children, Canada. Emerg Infect Dis 2007;13:1939–41.
  7. Norja  P, Ubillos  I, Templeton  K, Simmonds  P. No evidence for an association between infections with WU and KI polyomaviruses and respiratory disease. J Clin Virol. 2007;40:30711. DOIGoogle Scholar




Cite This Article

DOI: 10.3201/eid1403.071206

Related Links


Table of Contents – Volume 14, Number 3—March 2008

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Vincent Foulongne, Laboratory of Virology, Hôpital St-Eloi, 34295 Montpellier, Cedex 5, France;

Send To

10000 character(s) remaining.


Page created: July 07, 2010
Page updated: July 07, 2010
Page reviewed: July 07, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.