Volume 14, Number 4—April 2008
Synopsis
Potential Use of Antiviral Agents in Polio Eradication
Figure 2
References
- Griffiths E, Wood D, Barreto L. Polio vaccine: the first 50 years and beyond. Biologicals. 2006;34:73–4. DOIPubMedGoogle Scholar
- Kimman TG, Boot H. The polio eradication effort has been a great success–let's finish it and replace it with something even better. Lancet Infect Dis. 2006;6:675–8. DOIPubMedGoogle Scholar
- Arita I, Nakane M, Fenner F. Public health. Is polio eradication realistic? Science. 2006;312:852–4. DOIPubMedGoogle Scholar
- Minor PD. Polio eradication, cessation of vaccination and re-emergence of disease. Nat Rev Microbiol. 2004;2:473–82. DOIPubMedGoogle Scholar
- Aylward RB, Sutter RW, Heymann DL. Policy. OPV cessation—the final step to a “polio-free” world. Science. 2005;310:625–6. DOIPubMedGoogle Scholar
- Couzin J. Report concludes polio drugs are needed–after disease is eradicated. Science. 2006;311:1539a. DOIPubMedGoogle Scholar
- MacLennan C, Dunn G, Huissoon AP, Kumararatne DS, Martin J, O’Leary P, Failure to clear persistent vaccine-derived neurovirulent poliovirus infection in an immunodeficient man. Lancet. 2004;363:1509–13. DOIPubMedGoogle Scholar
- De Palma AM, Vliegen I, De Clercq E, Neyts J. Selective inhibitors of picornavirus replication. Med Res Rev. 2008.
- Palma AM, Heggermont W, Leyssen P, Purstinger G, Wimmer E, De Clercq K, Anti-enterovirus activity and structure-activity relationship of a series of 2,6-dihalophenyl-substituted 1H,3H-thiazolo[3,4-α]benzimidazoles. Biochem Biophys Res Commun. 2007;353:628–32. DOIPubMedGoogle Scholar
- McKinlay MA, Pevear DC, Rossmann MG. Treatment of the picornavirus common cold by inhibitors of viral uncoating and attachment. Annu Rev Microbiol. 1992;46:635–54.PubMedGoogle Scholar
- Florea NR, Maglio D, Nicolau DP. Pleconaril, a novel antipicornaviral agent. Pharmacotherapy. 2003;23:339–48. DOIPubMedGoogle Scholar
- Hayden FG, Hipskind GJ, Woerner DH, Eisen GF, Janssens M, Janssen PA, Intranasal pirodavir (R77,975) treatment of rhinovirus colds. Antimicrob Agents Chemother. 1995;39:290–4.PubMedGoogle Scholar
- Rotbart HA, Webster AD. Treatment of potentially life-threatening enterovirus infections with pleconaril. Clin Infect Dis. 2001;32:228–35. DOIPubMedGoogle Scholar
- Buttinelli G, Donati V, Fiore S, Marturano J, Plebani A, Balestri P, Nucleotide variation in Sabin type 2 poliovirus from an immunodeficient patient with poliomyelitis. J Gen Virol. 2003;84:1215–21. DOIPubMedGoogle Scholar
- Andries K, Rombaut B, Dewindt B, Boeye A. Discrepancy between infectivity and antigenicity stabilization of oral poliovirus vaccine by a capsid-binding compound. J Virol. 1994;68:3397–400.PubMedGoogle Scholar
- Patick AK, Binford SL, Brothers MA, Jackson RL, Ford CE, Diem MD, In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother. 1999;43:2444–50.PubMedGoogle Scholar
- DeLong DC, Reed SE. Inhibition of rhinovirus replication in organ culture by a potential antiviral drug. J Infect Dis. 1980;141:87–91.PubMedGoogle Scholar
- Heinz BA, Vance LM. The antiviral compound enviroxime targets the 3A coding region of rhinovirus and poliovirus. J Virol. 1995;69:4189–97.PubMedGoogle Scholar
- Wyde PR, Six HR, Wilson SZ, Gilbert BE, Knight V. Activity against rhinoviruses, toxicity, and delivery in aerosol of enviroxime in liposomes. Antimicrob Agents Chemother. 1988;32:890–5.PubMedGoogle Scholar
- Higgins PG, Barrow GI, al Nakib W, Tyrrell DA, DeLong DC, Lenox-Smith I. Failure to demonstrate synergy between interferon-alpha and a synthetic antiviral, enviroxime, in rhinovirus infections in volunteers. Antiviral Res. 1988;10:141–9. DOIPubMedGoogle Scholar
- Miller FD, Monto AS, DeLong DC, Exelby A, Bryan ER, Srivastava S. Controlled trial of enviroxime against natural rhinovirus infections in a community. Antimicrob Agents Chemother. 1985;27:102–6.PubMedGoogle Scholar
- Phillpotts RJ, Jones RW, DeLong DC, Reed SE, Wallace J, Tyrrell DA. The activity of enviroxime against rhinovirus infection in man. Lancet. 1981;317:1342–4. DOIPubMedGoogle Scholar
- Victor F, Loncharich R, Tang J, Spitzer WA. Synthesis and antiviral activity of C2 analogs of enviroxime: an exploration of the role of critical functionality. J Med Chem. 1997;40:3478–83. DOIPubMedGoogle Scholar
- Victor F, Brown TJ, Campanale K, Heinz BA, Shipley LA, Su KS, Synthesis, antiviral activity, and biological properties of vinylacetylene analogs of enviroxime. J Med Chem. 1997;40:1511–8. DOIPubMedGoogle Scholar
- Manns MP, Wedemeyer H, Cornberg M. Treating viral hepatitis C: efficacy, side effects, and complications. Gut. 2006;55:1350–9. DOIPubMedGoogle Scholar
- Sidwell RW, Barnard DL. Respiratory syncytial virus infections: recent prospects for control. Antiviral Res. 2006;71:379–90. DOIPubMedGoogle Scholar
- Carroll SS, Tomassini JE, Bosserman M, Getty K, Stahlhut MW, Eldrup AB, Inhibition of hepatitis C virus RNA replication by 2′-modified nucleoside analogs. J Biol Chem. 2003;278:11979–84. DOIPubMedGoogle Scholar
- Goris N, De Palma A, Toussaint JF, Musch I, Neyts J, De Clercq K. 2′-C-methylcytidine as a potent and selective inhibitor of the replication of foot-and-mouth disease virus. Antiviral Res. 2007;73:161–8. DOIPubMedGoogle Scholar
- Hadaschik D, Klein M, Zimmermann H, Eggers HJ, Nelsen-Salz B. Dependence of echovirus 9 on the enterovirus RNA replication inhibitor 2-(alpha-hydroxybenzyl)-benzimidazole maps to nonstructural protein 2C. J Virol. 1999;73:10536–9.PubMedGoogle Scholar
- Shimizu H, Agoh M, Agoh Y, Yoshida H, Yoshii K, Yoneyama T, Mutations in the 2C region of poliovirus responsible for altered sensitivity to benzimidazole derivatives. J Virol. 2000;74:4146–54. DOIPubMedGoogle Scholar
- Powers RD, Gwaltney JM Jr, Hayden FG. Activity of 2-(3,4-dichlorophenoxy)-5-nitrobenzonitrile (MDL-860) against picornaviruses in vitro. Antimicrob Agents Chemother. 1982;22:639–42.PubMedGoogle Scholar
- Reed SE, Meunch H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1938;27:493–7.
- Patick AK, Brothers MA, Maldonado F, Binford S, Maldonado O, Fuhrman S, In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother. 2005;49:2267–75. DOIPubMedGoogle Scholar
- Barnard DL, Hubbard VD, Smee DF, Sidwell RW, Watson KG, Tucker SP, In vitro activity of expanded-spectrum pyridazinyl oxime ethers related to pirodavir: novel capsid-binding inhibitors with potent antipicornavirus activity. Antimicrob Agents Chemother. 2004;48:1766–72. DOIPubMedGoogle Scholar
- Smith DB, Martin JA, Klumpp K, Baker SJ, Blomgren PA, Devos R, Design, synthesis, and antiviral properties of 4'-substituted ribonucleosides as inhibitors of hepatitis C virus replication: the discovery of R1479. Bioorg Med Chem Lett. 2007;17:2570–6. DOIPubMedGoogle Scholar
- Vignuzzi M, Stone JK, Andino R. Ribavirin and lethal mutagenesis of poliovirus: molecular mechanisms, resistance and biological implications. Virus Res. 2005;107:173–81. DOIPubMedGoogle Scholar
- World Health Organization. Conclusions and recommendations of the Advisory Committee on Poliomyelitis Eradication, Geneva, 11–12 October 2006, Part II. Wkly Epidemiol Rec. 2006;81:465–8.PubMedGoogle Scholar
Page created: July 16, 2010
Page updated: July 16, 2010
Page reviewed: July 16, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.