Volume 14, Number 6—June 2008
Dispatch
Land Use and West Nile Virus Seroprevalence in Wild Mammals
Table 1
Capture site | UI | Age | % WNV seroprevalence (no. samples) |
|||||
---|---|---|---|---|---|---|---|---|
Tamias striatus | Sciurus carolinensis | Didelphis virginiana | Peromyscus leucopus | Procyon lotor | Rattus norvegicus | |||
Baltimore, MD | 91.2 | J | 0 (3) | |||||
A | 64 (10) | 50 (2) | ||||||
Foggy Bottom, Washington, DC† | 75.5 | J | 20 (11) | 50 (2) | ||||
J‡ | 43 (7) | |||||||
A | 52 (23) | 50 (2) | 50 (6) | |||||
A‡ | 100 (6) | |||||||
Fort Dupont Park, Washington, DC | 38.8 | J | 100 (2) | 20 (5) | ||||
A | 75 (8) | 60 (5) | 50 (2) | |||||
Takoma Park, MD§ | 50.4 | J | 0 (2) | 71 (7) | ||||
J‡ | 50 (6) | |||||||
A | 65 (20) | 50 (6) | 100 (2) | |||||
A‡ | 100 (5) | |||||||
Bethesda, MD¶ | 41.5 | J | 0 (4) | 100 (1) | ||||
A | 22 (12) | 67 (13) | ||||||
Rock Creek Park, Rockville, MD# | 27.8 | J | 0 (5) | 0 (1) | ||||
A | 16 (6) | 30 (20) | 0 (3) | 100 (3) | ||||
SERC** | 16.2 | J | 50 (4) | 0 (11) | 0 (1) | |||
A | 100 (1) | 25 (4) | 0 (6) | 0 (1) |
*Mammals caught from June 14, 2005, through September 17, 2005, except where noted. WNV, West Nile virus; UI, urbanization index; A, adult; J, juvenile.
†Also sampled house mouse, Mus musculus (1 WNV-positive adult, 1 WNV -negative juvenile).
‡Samples from April 2006.
§Also sampled big brown bat, Eptesicus fuscus (1 WNV-negative adult), little brown bat, Myotis lucifugus (1 WNV-positive adult).
¶Also sampled little brown bat, Myotis lucifugus (1 WNV-positive adult).
#Also sampled groundhog, Marmota monax (1 WNV-negative adult).
**SERC, Smithsonian Environmental Research Center, Edgewater, MD; also sampled domestic cat (1 WNV-negative juvenile), groundhog, Marmota monax (1 WNV-negative adult, 1 WNV-positive adult), eastern cottontail rabbit, Sylvilagus floridanus (1 WNV-negative adult).
References
- Kilpatrick AM, Kramer LD, Campbell SR, Alleyne EO, Dobson AP, Daszak P. West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis. 2005;11:425–9.PubMedGoogle Scholar
- Dietrich G, Montenieri JA, Panella NA, Langevin S, Lasater SE, Klenk K, Serologic evidence of West Nile virus infection in free-ranging mammals, Slidell, Louisiana, 2002. Vector Borne Zoonotic Dis. 2005;5:288–92. DOIPubMedGoogle Scholar
- Root JJ, Hall JS, McLean RG, Marlenee NL, Beaty BJ, Gansowski J, Serologic evidence of exposure of wild mammals to flaviviruses in the central and eastern United States. Am J Trop Med Hyg. 2005;72:622–30.PubMedGoogle Scholar
- Andreadis TG, Anderson JF, Vossbrinck CR, Main AJ. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis. 2004;4:360–78. DOIPubMedGoogle Scholar
- Goetz SJ, Jantz CA, Prince SD, Smith AJ, Wright R, Varlyguin D. Integrated analysis of ecosystem interactions with land use change: the Chesapeake Bay watershed. In: DeFries RS, Asner GP, Houghton RA, editors. Ecosystems and land use change. Washington: American Geophysical Union; 2004. p. 263–75.
- Kunz TH, Wemmer C, Hayssen V. Sex, age and reproductive condition of mammals. In: Wilson DE, Russell Cole F, Nichols JD, Rudran R, Foster MS, editors. Measuring and monitoring biological diversity standard methods for mammals. Washington: Smithsonian Institution Press; 1996.
- Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD. Host heterogeneity dominates West Nile virus transmission. Proc R Soc Lond B Biol Sci. 2006;273:2327–33. DOIGoogle Scholar
- Calisher CH, Karabatsos N, Dalrymple JM, Shope RE, Porterfield JS, Westaway EG, Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol. 1989;70:37–43.PubMedGoogle Scholar
- Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak PBB. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 2006;4:e82–10. DOIGoogle Scholar
- Root JJ, Oesterle PT, Sullivan HJ, Hall JS, Marlenee NL, McLean RG, Short report: fox squirrel (Sciurus niger) associations with West Nile virus. Am J Trop Med Hyg. 2007;76:782–4.PubMedGoogle Scholar
- Docherty DE, Samuel MD, Nolden CA, Egstad KF, Griffin KM. West Nile virus antibody prevalence in wild mammals, Wisconsin. Emerg Infect Dis. 2006;12:1982–4.PubMedGoogle Scholar
- Bentler KT, Hall JS, Root JJ, Klenk K, Schmit B, Blackwell BF, Serologic evidence of West Nile virus exposure in North American mesopredators. Am J Trop Med Hyg. 2007;76:173–9.PubMedGoogle Scholar
- Platt KB, Tucker BJ, Halbur PG, Tiawsirisup S, Blitvich BJ, Fabiosa FG, West Nile virus viremia in eastern chipmunks (Tamias striatus) sufficient for infecting different mosquitoes. Emerg Infect Dis. 2007;13:831–7.PubMedGoogle Scholar
- Molaei G, Andreadis TA, Armstrong PM, Anderson JF, Vossbrinck CR. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis. 2006;12:468–74.PubMedGoogle Scholar
- Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Culex pipiens (Diptera:Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol. 2008;45:125–8. DOIPubMedGoogle Scholar