Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 14, Number 6—June 2008
Letter

Coronavirus Antibodies in Bat Biologists

Lauren J. Stockman*†1Comments to Author , Lia M. Haynes*1, Congrong Miao*†, Jennifer L. Harcourt*†, Charles E. Rupprecht*, Thomas G. Ksiazek*, Terri B. Hyde*, Alicia M. Fry*, and Larry J. Anderson*
Author affiliations: *Centers for Disease Control and Prevention, Atlanta, Georgia, USA; †Atlanta Research and Education Foundation, Decatur, Georgia, USA;

Main Article

Figure

Antibody reactivity to coronavirus (CoV) nucleocapsid (N) protein fragments by ELISA. A set of recombinant protein fragments covering the N protein sequence of human CoV (HCoV)–OC43, HCoV-229E, and severe acute respiratory syndrome (SARS)–CoV were used as antigen; the serum (1:400 dilution) from the participant was tested by ELISA. The fragments include the following HCoVs: HCoV-OC43 N1 (aa 1–119), HCoV-OC43 N2 (aa 120–332), HCoV-OC43 N3 (aa 333–448), HCoV-229E N1 (aa 1–74), HCoV-229E N2 (aa 75–311), HCoV-229E N3 (aa 312–389), SARS-CoV N1 (aa 1–105), SARS-CoV N2 (aa 106–324), and SARS-CoV N3 (aa 325–422). The HCoV-OC43, HCoV-229E, and SARS-CoV fragments were coated at 4 × 10–7 M, 2.5 × 10–3 M, and 8 × 10–8 M, respectively. The N-terminal of the N protein contains a highly conserved motif (FYYLGTGP) found in all CoVs (7). This conserved motif is found in HCoV-OC43 N2, HCoV-229E N2, and SARS-CoV N2 recombinant protein fragments. The sizes of the expressed protein fragments used in this study were confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. In addition, the reactivity of each protein fragment was confirmed by using Western blot with the anti-His antibody and the respective convalescent-phase serum. The mean optical density (OD) of absorbance at 405 nm (490-nm reference) of duplicate wells is shown. Error bars represent the standard deviation of duplicate wells.

Figure. Antibody reactivity to coronavirus (CoV) nucleocapsid (N) protein fragments by ELISA. A set of recombinant protein fragments covering the N protein sequence of human CoV (HCoV)–OC43, HCoV-229E, and severe acute respiratory syndrome (SARS)–CoV were used as antigen; the serum (1:400 dilution) from the participant was tested by ELISA. The fragments include the following HCoVs: HCoV-OC43 N1 (aa 1–119), HCoV-OC43 N2 (aa 120–332), HCoV-OC43 N3 (aa 333–448), HCoV-229E N1 (aa 1–74), HCoV-229E N2 (aa 75–311), HCoV-229E N3 (aa 312–389), SARS-CoV N1 (aa 1–105), SARS-CoV N2 (aa 106–324), and SARS-CoV N3 (aa 325–422). The HCoV-OC43, HCoV-229E, and SARS-CoV fragments were coated at 4 × 10–7 M, 2.5 × 10–3 M, and 8 × 10–8 M, respectively. The N-terminal of the N protein contains a highly conserved motif (FYYLGTGP) found in all CoVs (7). This conserved motif is found in HCoV-OC43 N2, HCoV-229E N2, and SARS-CoV N2 recombinant protein fragments. The sizes of the expressed protein fragments used in this study were confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. In addition, the reactivity of each protein fragment was confirmed by using Western blot with the anti-His antibody and the respective convalescent-phase serum. The mean optical density (OD) of absorbance at 405 nm (490-nm reference) of duplicate wells is shown. Error bars represent the standard deviation of duplicate wells.

Main Article

References
  1. World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 [cited 2005 Jul 26]. Available from http://www.who.int/csr/sars/country/table2004_04_21/en/print.html
  2. Li  W, Shi  Z, Yu  M, Ren  W, Smith  C, Epstein  JH, Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:6769. DOIPubMedGoogle Scholar
  3. Lau  SK, Woo  PC, Li  KS, Huang  Y, Tsoi  HW, Wong  BH, Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:140405. DOIPubMedGoogle Scholar
  4. Muller  MA, Paweska  JT, Leman  PA, Drosten  C, Grywna  K, Kemp  A, Coronavirus antibodies in African bat species. Emerg Infect Dis. 2007;13:136770.PubMedGoogle Scholar
  5. Ksiazek  TG, Erdman  D, Goldsmith  CS, Zaki  SR, Peret  T, Emery  S, A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:195366. DOIPubMedGoogle Scholar
  6. Haynes  LM, Miao  C, Harcourt  JL, Montgomery  JM, Le  MQ, Dryga  SA, Recombinant protein-based assays for detection of antibodies to severe acute respiratory syndrome coronavirus spike and nucleocapsid proteins. Clin Vaccine Immunol. 2007;14:3313. DOIPubMedGoogle Scholar
  7. Rota  PA, Oberste  MS, Monroe  SS, Nix  WA, Campagnoli  R, Icenogle  JP, Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:13949. DOIPubMedGoogle Scholar
  8. Sun  ZF, Meng  XJ. Antigenic cross-reactivity between the nucleocapsid protein of severe acute respiratory syndrome (SARS) coronavirus and polyclonal antisera of antigenic group I animal coronaviruses: implication for SARS diagnosis. J Clin Microbiol. 2004;42:23512. DOIPubMedGoogle Scholar
  9. Woo  PC, Lau  SK, Wong  BH, Chan  KH, Hui  WT, Kwan  GS, False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid enzyme-linked immunosorbent assay due to HCoV-OC43 and HCoV-229E rectified by Western blotting with recombinant SARS-CoV spike polypeptide. J Clin Microbiol. 2004;42:58858. DOIPubMedGoogle Scholar
  10. Dominguez  SR, O’Shea  TJ, Oko  LM, Holmes  KV. Detection of group 1 coronaviruses in bats in North America. Emerg Infect Dis. 2007;13:1295300.PubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: July 09, 2010
Page updated: July 09, 2010
Page reviewed: July 09, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external