Volume 14, Number 9—September 2008
Research
Excretion of Transmissible Spongiform Encephalopathy Infectivity in Urine
Table 2
Dilution | Total/no. infected |
|
---|---|---|
Bladder | Kidney | |
10–1 | 19/19 | 4/4 |
10–1.3 | 8/8 | 20/20 |
10–1.7 | 8/8 | 8/8 |
10–2 | 4/4 | 8/8 |
10–3 | 4/4 | 4/3 |
10–4 | 4/2 | 4/1 |
10–5 | 4/1 | 4/0 |
10–6 | 4/0 | 4/0 |
Titer (log10 ID50/g)* | 5.5 | 5.0 |
Standard error | 0.5 | 0.4 |
References
- Gregori L, McCombie N, Palmer D, Birch P, Sowemimo-Coker SO, Giulivi A, Effectiveness of leucoreduction for removal of infectivity of transmissible spongiform encephalopathies from blood. Lancet. 2004;364:529–31. DOIPubMedGoogle Scholar
- Gregori L, Gurgel PV, Lathrop JT, Edwardson P, Lambert BC, Carbonell RG, Reduction in infectivity of endogenous transmissible spongiform encephalopathies present in blood by adsorption to selective affinity resins. Lancet. 2006;368:2226–30. DOIPubMedGoogle Scholar
- Hewitt PE, Llewelyn CA, Mackenzie J, Will RG. Creutzfeldt-Jakob disease and blood transfusion: results of the UK Transfusion Medicine Epidemiological Review study. Vox Sang. 2006;91:221–30. DOIPubMedGoogle Scholar
- Health Protection Agency. A new case of variant CJD associated with blood transfusion [cited 2008 Jan 2]. Available from http://www.hpa.org.uk/hpa/news/articles/press_releases/2007/070118_vCJD.htm
- Matorras R, Rodriguez-Escudero FJ. Prions, urinary gonadotrophins and recombinant gonadotrophins. Hum Reprod. 2003;18:1129–30. DOIPubMedGoogle Scholar
- Reichl H, Balen A, Jansen CA. Prion transmission in blood and urine: what are the implications for recombinant and urinary-derived gonadotrophins? Hum Reprod. 2002;17:2501–8. DOIPubMedGoogle Scholar
- Kuroda Y, Gibbs CJ Jr, Amyx HL, Gajdusek DC. Creutzfeldt-Jakob disease in mice: persistent viremia and preferential replication of virus in low-density lymphocytes. Infect Immun. 1983;41:154–61.PubMedGoogle Scholar
- Gajdusek DC, Gibbs CJ Jr, Alpers M. Transmission and passage of experimenal "kuru" to chimpanzees. Science. 1967;155:212–4.PubMedGoogle Scholar
- Shaked GM, Shaked Y, Kariv-Inbal Z, Halimi M, Avraham I, Gabizon R. A protease-resistant prion protein isoform is present in urine of animals and humans affected with prion diseases. J Biol Chem. 2001;276:31479–82. DOIPubMedGoogle Scholar
- Kariv-Inbal Z, Ben-Hur T, Grigoriadis NC, Engelstein R, Gabizon R. Urine from scrapie-infected hamsters comprises low levels of prion infectivity. Neurodegener Dis. 2006;3:123–8. DOIPubMedGoogle Scholar
- Seeger H, Heikenwalder M, Zeller N, Kranich J, Schwarz P, Gaspert A, Coincident scrapie infection and nephritis lead to urinary prion excretion. Science. 2005;310:324–6. DOIPubMedGoogle Scholar
- Heikenwalder M, Zeller N, Seeger H, Prinz M, Klöhn PC, Schwarz P, Chronic lymphocytic inflammation specifies the organ tropism of prions. Science. 2005;307:1107–10. DOIPubMedGoogle Scholar
- Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Hyg. 1938;27:493–7.
- Pizzi M. Sampling variation of the fifty percent end-point, determined by the Reed-Muench (Behrens) method. Hum Biol. 1950;22:151–90.PubMedGoogle Scholar
- Spearman C. The method of “right and wrong cases” (“constant stimuli”) without Gauss’s formulae. Br J Psychol. 1908;2:227–42.
- Elliott EJ, MacAuley C, Robins D, Rohwer RG. Working safely with transmissible spongiform encephalopathies. In: Richmond JY, Editor. Anthology of biosafety, vol. 7. Mundelein (IL): American Biological Safety Association; 2005.
- Mathiason CK, Powers JG, Dahmes SJ, Osborn DA, Miller KV, Warren RJ, Infectious prions in the saliva and blood of deer with chronic wasting disease. Science. 2006;314:133–6. DOIPubMedGoogle Scholar
- Deleault NR, Harris BT, Rees JR, Supattapone S. Formation of native prions from minimal components in vitro. Proc Natl Acad Sci U S A. 2007;104:9741–6. DOIPubMedGoogle Scholar
- Hadlow WJ, Race RE, Kennedy RC. Temporal distribution of transmissible mink encephalopathy virus in mink inoculated subcutaneously. J Virol. 1987;61:3235–40.PubMedGoogle Scholar
- Marsh RF, Burger D, Hanson RP. Transmissible mink encephalopathy: behaviour of the agent in mink. J Infect Dis. 1969;120:713–9.PubMedGoogle Scholar
- Brown P, Gibbs CJ Jr, Rodgers-Johnson P, Asher DM, Sulima MP, Bacote A, Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol. 1994;35:513–29. DOIPubMedGoogle Scholar
- Sisó S, González L, Jeffrey M, Martin S, Chianini F, Steele P. Prion protein in kidneys of scrapie-infected sheep. Vet Rec. 2006;159:327–8.PubMedGoogle Scholar
- Ligios C, Cancedda GM, Margalith I, Santucciu C, Madau L, Maestrale C, Intraepithelial and interstitial deposition of pathological prion protein in kidneys of scrapie-affected sheep. PLoS One. 2007;2:e859. DOIPubMedGoogle Scholar
- Hamir AN, Kunkle RA, Miller J. M, Hall SM. Abnormal prion protein in ectopic lymphoid tissue in a kidney of an asymptomatic white-tailed deer experimentally inoculated with the agent of chronic wasting disease. Vet Pathol. 2006;43:367–9. DOIPubMedGoogle Scholar
- Brown P, Rohwer RG, Dunstan BC, MacAuley C, Gajdusek DC, Drohan WN. The distribution of infectivity in blood components and plasma derivatives in experimental models of transmissible spongiform encephalopathy. Transfusion. 1998;38:810–6. DOIPubMedGoogle Scholar
- Head MW, Kouverianou E, Taylor L, Green A, Knight R. Evaluation of urinary PrPSc as a diagnostic test for sporadic, variant, and familial CJD. Neurology. 2005;64:1794–6. DOIPubMedGoogle Scholar
- Narang HK, Dagdanova A, Xie Z, Yang Q, Chen SG. Sensitive detection of prion protein in human urine. Exp Biol Med (Maywood). 2005;230:343–9.PubMedGoogle Scholar
- Krause CH, Eastick K, Ogilvie MM. Real-time PCR for mumps diagnosis on clinical specimens—comparison with results of conventional methods of virus detection and nested PCR. J Clin Virol. 2006;37:184–9. DOIPubMedGoogle Scholar
- Rota PA, Khan AS, Durigon E, Yuran T, Villamarzo YS, Bellini WJ. Detection of measles virus RNA in urine specimens from vaccine recipients. J Clin Microbiol. 1995;33:2485–8.PubMedGoogle Scholar
- Tonry JH, Brown CB, Cropp CB, Co JK, Bennett SN, Nerurkar VR, West Nile virus detection in urine. Emerg Infect Dis. 2005;11:1294–6.PubMedGoogle Scholar
- Georgsson G, Sigurdarson S, Brown P. Infectious agent of sheep scrapie may persist in the environment for at least 16 years. J Gen Virol. 2006;87:3737–40. DOIPubMedGoogle Scholar
- Johnson CJ, Phillips KE, Schramm PT, McKenzie D, Aiken JM, Pedersen JA. Prions adhere to soil minerals and remain infectious. PLoS Pathog. 2006;2:e32. DOIPubMedGoogle Scholar
- Seidel B, Thomzig A, Buschmann A, Groschup MH, Peters R, Beekes M, Scrapie agent (strain 263K) can transmit disease via the oral route after persistence in soil over years. PLoS One. 2007;2:e435. DOIPubMedGoogle Scholar
Page created: July 13, 2010
Page updated: July 13, 2010
Page reviewed: July 13, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.