Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 14, Number 9—September 2008
Dispatch

Juquitiba-like Hantavirus from 2 Nonrelated Rodent Species, Uruguay

Adriana Delfraro, Lorena Tomé, Guillermo D’Elía, Mario Clara, Federico Achával, José C. Russi, and Juan ArbizaComments to Author 
Author affiliations: Universidad de la República, Montevideo, Uruguay (A. Delfraro, L. Tomé, M. Clara, F. Achával, J. Arbiza Rodonz); Universidad de Concepción, Concepción, Chile (G. D´Elía); Ministerio de Salud Pública, Montevideo (J.C. Russi [retired]);

Main Article

Figure 1

Majority-rule consensus tree obtained in the Bayesian analysis of sequences of the medium segment of Juquitiba-like hantavirus isolated from 2 nonrelated rodent species. Posterior probabilities >0.80 are shown at the nodes. Alignment and editing of nucleotide sequences were conducted by using BioEdit v7.0.9.0 (www.mbio.ncsu.edu/BioEdit/BioEdit.html). Sequences of Seoul and Hantaan hantaviruses were used as outgroup. Estimation of the suitable model of nucleotide substitution and phylogenetic analyses were carried out by using Modelgenerator (http://bioinf.may.ie/software/modelgenerator), MrBayes v3.1.2 (Bayesian analysis; http://mrbayes.csit.fsu.edu), and PAUP* 4.0b10 (maximum-parsimony analysis; http://paup.csit.fsu.edu). Bayesian analyses were conducted under the general time reversible + gamma + proportion invariant model. Two runs of 4 chains each (1 cold, 3 heated, temperature 0.20) were run for 3 million generations; trees were sampled every 100 generations. Convergence was assessed by using the average standard deviation in partition frequency values across independent analyses with a threshold value of 0.01; burn-in was set to 25%. Seropositive specimens from Uruguay are as follows: PB1033 (black-footed pigmy rice rat, Oligoryzomys nigripes) and PB1002 (long-nosed mouse, Oxymycterus nasutus), GenBank accession nos. EU564726 and EU564725, respectively. Analyzed hantavirus sequences are Hantaan, (DQ371905), Seoul (SA7716), Juquitiba (AY963900, On10386, On15691, On15827, Hu206776, Hu238063, Hu193256), Maporal (AY363179), Andes Central Plata (AY204678, AY204677, AY204679, AY204680, EU564721), Lechiguanas (AF028022, AF283897), Bermejo (AF028025), Hu39694 (AF028023), Orán (AF028024), Andes (AF291703, AF324901, AF028026, AY228238), Castelo dos Sonhos (AF307326), Maciel (AF028051), Araraquara (AF307327, AY970821), Pergamino (AF028028), Laguna Negra (AF005728), Sin Nombre–like (L37903, AF030552, AF030551), Puumala (U14136, U22418), and Muju (EF198413). Scale bar indicates expected changes per site.

Figure 1. Majority-rule consensus tree obtained in the Bayesian analysis of sequences of the medium segment of Juquitiba-like hantavirus isolated from 2 nonrelated rodent species. Posterior probabilities >0.80 are shown at the nodes. Alignment and editing of nucleotide sequences were conducted by using BioEdit v7.0.9.0 (www.mbio.ncsu.edu/BioEdit/BioEdit.html). Sequences of Seoul and Hantaan hantaviruses were used as outgroup. Estimation of the suitable model of nucleotide substitution and phylogenetic analyses were carried out by using Modelgenerator (http://bioinf.may.ie/software/modelgenerator), MrBayes v3.1.2 (Bayesian analysis; http://mrbayes.csit.fsu.edu), and PAUP* 4.0b10 (maximum-parsimony analysis; http://paup.csit.fsu.edu). Bayesian analyses were conducted under the general time reversible + gamma + proportion invariant model. Two runs of 4 chains each (1 cold, 3 heated, temperature 0.20) were run for 3 million generations; trees were sampled every 100 generations. Convergence was assessed by using the average standard deviation in partition frequency values across independent analyses with a threshold value of 0.01; burn-in was set to 25%. Seropositive specimens from Uruguay are as follows: PB1033 (black-footed pigmy rice rat, Oligoryzomys nigripes) and PB1002 (long-nosed mouse, Oxymycterus nasutus), GenBank accession nos. EU564726 and EU564725, respectively. Analyzed hantavirus sequences are Hantaan, (DQ371905), Seoul (SA7716), Juquitiba (AY963900, On10386, On15691, On15827, Hu206776, Hu238063, Hu193256), Maporal (AY363179), Andes Central Plata (AY204678, AY204677, AY204679, AY204680, EU564721), Lechiguanas (AF028022, AF283897), Bermejo (AF028025), Hu39694 (AF028023), Orán (AF028024), Andes (AF291703, AF324901, AF028026, AY228238), Castelo dos Sonhos (AF307326), Maciel (AF028051), Araraquara (AF307327, AY970821), Pergamino (AF028028), Laguna Negra (AF005728), Sin Nombre–like (L37903, AF030552, AF030551), Puumala (U14136, U22418), and Muju (EF198413). Scale bar indicates expected changes per site.

Main Article

Page created: July 13, 2010
Page updated: July 13, 2010
Page reviewed: July 13, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external