Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 15, Number 11—November 2009
Dispatch

Dengue Virus Serotype 4, Northeastern Peru, 2008

Brett M. Forshey, Amy C. Morrison, Cristhopher Cruz, Claudio Rocha, Stalin Vilcarromero, Carolina Guevara, Daria E. Camacho, Araceli Alava, César Madrid, Luis Beingolea, Víctor Suarez, Guillermo Comach, and Tadeusz J. KochelComments to Author 
Author affiliations: US Naval Medical Research Center Detachment, Lima and Iquitos, Peru (B.M. Forshey, A.C. Morrison, C. Cruz, C. Rocha, S. Vilcarromero, C. Guevara, T.J. Kochel); University of California, Davis, California, USA (A.C. Morrison); Laboratorio Regional de Diagnostico e Investigación del Dengue y otras Enfermedades Virales, Maracay, Estado Aragua, Venezuela (D.E. Camacho, G. Comach); Instituto Nacional de Higiene y Medicina Tropical "Leopoldo Izquieta Pérez", Guayaquil, Ecuador (A. Alava); Naval Hospital, Guayaquil (C. Madrid); Dirección General de Epidemiología, Ministerio de Salud, Lima (L. Beingolea); Instituto Nacional de Salud, Lima (V. Suarez)

Main Article

Figure 2

Phylogenetic analysis of the envelope gene of dengue virus serotype 4 (DENV–4) strains from Ecuador, Peru, and Venezuela. Similar topologies were observed from neighbor-joining (depicted), maximum likelihood, and maximum parsimony analyses, implemented in PAUP* v.4.0b10 (12). The general time reversible model of evolution was used for neighbor-joining and maximum-likelihood analyses. DENV-4 genotype I strains (not shown) were included as an outgroup. Bootstrap values (based on 1,000 replicates)

Figure 2. Phylogenetic analysis of the envelope gene of dengue virus serotype 4 (DENV–4) strains from Ecuador, Peru, and Venezuela. Similar topologies were observed from neighbor-joining (depicted), maximum likelihood, and maximum parsimony analyses, implemented in PAUP* v.4.0b10 (12). The general time reversible model of evolution was used for neighbor-joining and maximum-likelihood analyses. DENV-4 genotype I strains (not shown) were included as an outgroup. Bootstrap values (based on 1,000 replicates) >65 are shown at major nodes. Isolates first reported in this study are shown in boldface and with sample identification code. Some sequenced isolates from Peru and Venezuela that share high nucleotide identity (>99.7%) with depicted strains were omitted to reduce redundancy and improve clarity of the figure. Sequences were deposited in the GenBank database under the accession nos. GQ139572–GQ139577 (Ecuador), GQ139547–GQ139571 (Peru), and GQ139578–GQ139591 (Venezuela). Scale bar indicates number of nucleotide substitutions per site.

Main Article

References
  1. Gubler  DJ. Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp. 2006;277:3–16; discussion 16–22, 71–3, 251–3.
  2. Pan American Health Organization (PAHO). Number of reported cases of dengue and dengue hemorrhagic fever (DHF), region of the Americas (by country and subregion) [cited 2008 Dec 20]. Available from http://www.paho.org/english/AD/DPC/CD/dengue-cases-2007.htm
  3. Guzman  MG, Kouri  G. Dengue and dengue hemorrhagic fever in the Americas: lessons and challenges. J Clin Virol. 2003;27:113. DOIPubMedGoogle Scholar
  4. Pinheiro  F, Nelson  M. Re-emergence of dengue and emergence of dengue haemorrhagic fever in the Americas. . Dengue Bull. 1997;21:16.
  5. Bennett  SN, Holmes  EC, Chirivella  M, Rodriguez  DM, Beltran  M, Vorndam  V, Selection-driven evolution of emergent dengue virus. Mol Biol Evol. 2003;20:16508. DOIPubMedGoogle Scholar
  6. Nogueira  RM, de Araujo  JM, Schatzmayr  HG. Dengue viruses in Brazil, 1986-2006. Rev Panam Salud Publica. 2007;22:35863. DOIPubMedGoogle Scholar
  7. Wilson  ME, Chen  LH. Dengue in the Americas. Dengue Bull. 2002;26:4461.
  8. Kochel  T, Aguilar  P, Felices  V, Comach  G, Cruz  C, Alava  A, Molecular epidemiology of dengue virus type 3 in northern South America: 2000–2005. Infect Genet Evol. 2008;8:6828. DOIPubMedGoogle Scholar
  9. Foster  JE, Bennett  SN, Vaughan  H, Vorndam  V, McMillan  WO, Carrington  CV. Molecular evolution and phylogeny of dengue type 4 virus in the Caribbean. Virology. 2003;306:12634. DOIPubMedGoogle Scholar
  10. Dussart  P, Lavergne  A, Lagathu  G, Lacoste  V, Martial  J, Morvan  J, Reemergence of dengue virus type 4, French Antilles and French Guiana, 2004–2005. Emerg Infect Dis. 2006;12:174851.PubMedGoogle Scholar
  11. Klungthong  C, Zhang  C, Mammen  MP Jr, Ubol  S, Holmes  EC. The molecular epidemiology of dengue virus serotype 4 in Bangkok, Thailand. Virology. 2004;329:16879. DOIPubMedGoogle Scholar
  12. Swofford  DL. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland (MA): Sinauer Associates; 1998.
  13. Watts  DM, Porter  KR, Putvatana  P, Vasquez  B, Calampa  C, Hayes  CG, Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet. 1999;354:14314. DOIPubMedGoogle Scholar
  14. Kochel  TJ, Watts  DM, Halstead  SB, Hayes  CG, Espinoza  A, Felices  V, Effect of dengue-1 antibodies on American dengue-2 viral infection and dengue haemorrhagic fever. Lancet. 2002;360:3102. DOIPubMedGoogle Scholar
  15. Adams  B, Holmes  EC, Zhang  C, Mammen  MP Jr, Nimmannitya  S, Kalayanarooj  S, Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok. Proc Natl Acad Sci U S A. 2006;103:142349. DOIPubMedGoogle Scholar

Main Article

Page created: December 09, 2010
Page updated: December 09, 2010
Page reviewed: December 09, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external