Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 15, Number 12—December 2009
Dispatch

Mopeia Virus–related Arenavirus in Natal Multimammate Mice, Morogoro, Tanzania

Stephan GüntherComments to Author , Guy Hoofd, Remi Charrel, Christina Röser, Beate Becker-Ziaja, Graham Lloyd, Christopher Sabuni, Ron Verhagen, Guido van der Groen, Jan Kennis, Abdul Katakweba, Rhodes Makundi, Herwig Leirs, and Robert Machang'u
Author affiliations: Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany (S. Günther, B. Becker-Ziaja); Institute of Tropical Medicine Leopold II, Antwerp, Belgium (G. Hoofd, G. van der Groen); Université de la Méditerranée, Marseille, France (R. Charrel); Artus Company, Hamburg (C. Röser); Centre for Emergency Preparedness and Response, Salisbury, UK (G. Lloyd); Sokoine University of Agriculture, Morogoro, Tanzania (C. Sabuni, A. Katakweba, R. Machang’u, R. Makundi); University of Antwerp Department of Biology, Antwerp (R. Verhagen, J. Kennis, H. Leirs); University of Aarhus Department of Integrated Pest Management, Kongens Lyngby, Denmark (H. Leirs)

Main Article

Figure 2

Phylogenetic tree and molecular clock of Morogoro virus based on partial large gene sequences of 17 strains (340 nucleotides; GenBank accession nos. EU914104 and EU914107–EU914122). Phylogeny was inferred with the BEAST v1.4.8 package (11) under assumption of a relaxed lognormal molecular clock and general time reversible substitution model with gamma-distributed substitution rate variation among sites. Branches with posterior probability <0.5 were collapsed. The substitution rate per site an

Figure 2. Phylogenetic tree and molecular clock of Morogoro virus based on partial large gene sequences of 17 strains (340 nucleotides; GenBank accession nos. EU914104 and EU914107–EU914122). Phylogeny was inferred with the BEAST v1.4.8 package (11) under assumption of a relaxed lognormal molecular clock and general time reversible substitution model with gamma-distributed substitution rate variation among sites. Branches with posterior probability <0.5 were collapsed. The substitution rate per site and year is indicated for each branch. Node ages and rates are median values. Variation in rates among branches is low as calculated with Tracer program (beast.bio.ed.ac.uk/Tracer) indicating a molecular clock in the evolution of Morogoro virus. The same tree topology with similar substitution rates was obtained when assuming the Hasegawa-Kishino-Yano substitution model (not shown).

Main Article

References
  1. Günther  S, Lenz  O. Lassa virus. Crit Rev Clin Lab Sci. 2004;41:33990. DOIPubMedGoogle Scholar
  2. Delgado  S, Erickson  BR, Agudo  R, Blair  PJ, Vallejo  E, Albarino  CG, Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog. 2008;4:e1000047. DOIPubMedGoogle Scholar
  3. Briese  T, Paweska  JT, McMullan  LK, Hutchison  SK, Street  C, Palacios  G, Genetic detection and characterization of Lujo virus, a new hemorrhagic fever–associated arenavirus from southern Africa. PLoS Pathog. 2009;5:e1000455. DOIPubMedGoogle Scholar
  4. Wulff  H, McIntosh  BM, Hamner  DB, Johnson  KM. Isolation of an arenavirus closely related to Lassa virus from Mastomys natalensis in south-east Africa. Bull World Health Organ. 1977;55:4414.PubMedGoogle Scholar
  5. Johnson  KM, Taylor  P, Elliott  LH, Tomori  O. Recovery of a Lassa-related arenavirus in Zimbabwe. Am J Trop Med Hyg. 1981;30:12913.PubMedGoogle Scholar
  6. Gonzalez  JP, McCormick  JB, Saluzzo  JF, Herve  JP, Georges  AJ, Johnson  KM. An arenavirus isolated from wild-caught rodents (Pramys species) in the Central African Republic. Intervirology. 1983;19:10512. DOIPubMedGoogle Scholar
  7. Lecompte  E, ter Meulen  J, Emonet  S, Daffis  S, Charrel  RN. Genetic identification of Kodoko virus, a novel arenavirus of the African pigmy mouse (Mus Nannomys minutoides) in West Africa. Virology. 2007;364:17883. DOIPubMedGoogle Scholar
  8. van der Groen  G, Kurata  T, Mets  C. Modifications to indirect immunofluorescence tests on Lassa, Marburg, and Ebola material. Lancet. 1983;1:654. DOIPubMedGoogle Scholar
  9. Vieth  S, Drosten  C, Lenz  O, Vincent  M, Omilabu  S, Hass  M, RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Trans R Soc Trop Med Hyg. 2007;101:125364. DOIPubMedGoogle Scholar
  10. Günther  S, Emmerich  P, Laue  T, Kühle  O, Asper  M, Jung  A, Imported Lassa fever in Germany: molecular characterization of a new Lassa virus strain. Emerg Infect Dis. 2000;6:46676. DOIPubMedGoogle Scholar
  11. Drummond  AJ, Ho  SY, Phillips  MJ, Rambaut  A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88. DOIPubMedGoogle Scholar
  12. Essbauer  SS, Schmidt-Chanasit  J, Madeja  EL, Wegener  W, Friedrich  R, Petraityte  R, Nephropathia epidemica in metropolitan area, Germany. Emerg Infect Dis. 2007;13:12713.PubMedGoogle Scholar
  13. Walker  DH, Wulff  H, Lange  JV, Murphy  FA. Comparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis. Bull World Health Organ. 1975;52:52334.PubMedGoogle Scholar
  14. Vieth  S, Torda  AE, Asper  M, Schmitz  H, Günther  S. Sequence analysis of L RNA of Lassa virus. Virology. 2004;318:15368. DOIPubMedGoogle Scholar
  15. Jenkins  GM, Rambaut  A, Pybus  OG, Holmes  EC. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol. 2002;54:15665. DOIPubMedGoogle Scholar

Main Article

Page created: December 09, 2010
Page updated: December 09, 2010
Page reviewed: December 09, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external