Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 10—October 2010

Avian Leukosis Virus Subgroup J in Layer Chickens, China

On This Page
Article Metrics
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: In recent years, cases of avian leukosis virus subgroup J (ALV-J) infection and tumors in commercial layer chickens and breeders of egg-type chickens have been emerging in the People’s Republic of China. ALV-J was first isolated from meat-type chickens with myeloid leukosis in 1988. Although egg-type chickens have been experimentally infected with ALV-J to induce tumors (1), field cases of ALV-J infection and tumors in commercial layer chickens were not found worldwide until 2004 (2).

ALV-J has recently been found to have induced various tumors and caused production problems in commercial layer flocks and local chicken breeds in China (2,3). Many field cases of ALV-J infection and tumors have occurred in 15- to 29-week-old egg-type chickens in several provinces. Affected flocks had dramatically reduced egg production and hemorrhage in the skin surrounding the phalanges and feather follicles. Some birds had gray-white nodules in the liver, spleen, or kidneys, and liver and spleen were enlarged up to several times their normal size. Morbidity rates for some flocks reached 60%, and mortality rates for some flocks were >20%. Clinical samples from livers, spleens, whole blood, and tumors were collected from chickens in different provinces and sent for laboratory diagnosis. Results showed that the predominant virus in the samples was ALV-J.

During 2007–2009, we conducted an epidemiologic investigation of ALV in layer flocks in China. All virus isolation was performed in DF-1 cells. Briefly, 233 clinical samples were collected from 44 layer flocks in different provinces and used to inoculate subconfluent cell cultures containing Dulbecco modified essential medium supplemented with 10% (vol/vol) fetal bovine serum and antimicrobial drugs. After a 7–9 day incubation period, the cells were frozen and thawed 3×. A group-specific antigen-capture ELISA was used to identify ALV. After proviral DNA was extracted directly from infected cell culture or tumors, PCR with strain-specific primers was used to detect ALV-A, ALV-B, or ALV-J (4).

Of these samples, 150 (64.4%) were ALV-J positive, 28 (12.1%) were ALV-A positive, and 8 (3.4%) were ALV-B positive. Phylogenetic analysis showed an 87.3%–98.2% aa sequence identity of env genes in all ALV isolates compared with the HPRS-103 strain (5). All isolates had complete repeated transmembrane deletion and partial direct repeat–1 deletion but contained an intact E element. A mutation was found in the enhancer and promoter region of the U3 region in the 3′ long terminal repeat; this mutation is not found in ALV-J isolated from broiler chickens (6).

The newly isolated ALV-J strain from layer chickens was used to examine the pathogenicity in 1-day-old White Leghorn specific pathogen–free chicks soon after hatching in separate incubators and rooms in the experimental animal house facilities at Harbin Veterinary Research Institute, Harbin, China. The chicks were inoculated intraabdominally with a 1,000-unit 50% tissue-culture infective dose of ALV-J propagated in the DF-1 cells. Blood samples were collected to check for viremia at 10 weeks of age. Experimental birds were reared until 27–30 weeks of age.

Prolonged viremia developed in 15 (50%) of 30 chicks; hemangiomas developed in the skin surrounding phalanges and in the liver of 3 (10%); and myeloid leukosis, detected by gross or histologic examination, developed in 10 (30.3%). A previous study showed that meat-type birds infected with ALV-J retained a high level of viremia over their lifetime (7) but that layer chickens cleared the infection within a few weeks. Our study demonstrated that ALV-J infection can cause disease in layer chickens and can induce tumors and long-lasting viremia. For this reason, disease caused by ALV-J in layer chickens in China should be further investigated.

Because ALV-J is vertically transmitted from dam to progeny by the embryo, it represents a potential threat for humans who receive vaccines that are produced in chicken embryonic fibroblasts or embryonated eggs (e.g., yellow fever vaccine and measles and mumps vaccine) (8). An effective vaccine against ALV is not available. Eradication of ALV-J has been difficult because of substantial genetic and antigenic variation among ALV-J isolates as well as high levels of vertical and horizontal transmission (9,10). Therefore, effective prevention and elimination measures should be developed as soon as possible.



We thank Liang Xiaozhen for help with preparation of this article and Shao Huabin and Luo Qingping for providing samples.

This study was supported by the earmarked fund for Modern Agro-industry Technology Research System (no. nycytx-42-G3-01) and Harbin Programs for Science and Technology Development (no. 2010AA6AN034).


Yu-Long Gao, Li-Ting Qin, Wei Pan, Yong-Qiang Wang, Xiao-Le Qi, Hong-Lei Gao, and Xiao-Mei WangComments to Author 
Author affiliations: Author affiliation: Harbin Veterinary Research Institute–Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China



  1. Payne  LN, Gillespie  AM, Howes  K. Myeloid leukemia and transmission of the HPRS- 103 strain of avian leukosis virus. Leukemia. 1992;6:116776.PubMedGoogle Scholar
  2. Binrui  X, Weixing  D, Chunming  D, He  ZP, Lu  YL, Sun  YZ, Occurrence of avian leukosis virus subgroup J in commercial layer flocks in China. Avian Pathol. 2004;33:137. DOIPubMedGoogle Scholar
  3. Chen  Z, Zhang  L, Liu  S, Zhang  L, Cui  Z. Emerging of avian leukosis virus subgroup J in a flock of Chinese local breed [in Chinese]. Acta Microbiol Sin. 2005;45:5847.
  4. Smith  LM, Brown  SR, Howes  K, McLeod  S, Arshad  SS, Barron  GS, Development and application of polymerase chain reaction (PCR) tests for the detection of subgroup J avian leukosis virus. Virus Res. 1998;54:8798. DOIPubMedGoogle Scholar
  5. Bai  J, Payne  LN, Skinner  MA. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses. J Virol. 1995;69:77984.PubMedGoogle Scholar
  6. Wand  H, Cui  ZZ. The identification and sequence analysis of ALV-J isolated from layers [in Chinese]. Chin J Virol. 2008;24:36975.
  7. Payne  LN, Gillespie  AM, Howes  K. Recovery of acutely transforming viruses from myeloid leukosis induced by the HPRS-103 strain of avian leukosis virus. Avian Dis. 1993;37:43850. DOIPubMedGoogle Scholar
  8. Hussain  AI, Johnson  JA, Da Silva Freire  M, Heneine  W. Identification and characterization of avian retroviruses in chicken embryo–derived yellow fever vaccines: investigation of transmission to vaccine recipients. J Virol. 2003;77:110511. DOIPubMedGoogle Scholar
  9. Fadly  AM, Smith  EJ. Isolation and some characteristics of an isolate associated with myeloid leukosis in meat-type chickens in the United States. Avian Dis. 1999;43:391400. DOIPubMedGoogle Scholar
  10. Venugopal  K, Smith  LM, Howes  K, Payne  LN. Antigenic variants of subgroup J avian leukosis virus: sequence analysis reveals multiple changes in the env gene. J Gen Virol. 1998;79:75766.PubMedGoogle Scholar


Cite This Article

DOI: 10.3201/eid1610.100780

Related Links


Table of Contents – Volume 16, Number 10—October 2010

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Xiao-Mei Wang, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan St, Harbin 150001, People’s Republic of China

Send To

10000 character(s) remaining.


Page created: September 08, 2011
Page updated: September 08, 2011
Page reviewed: September 08, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.