Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 11—November 2010
Research

Measles Virus Strain Diversity, Nigeria and Democratic Republic of the Congo

Jacques R. Kremer, Edith Nkwembe, Akeeb O. Bola Oyefolu, Sheilagh B. Smit, Elisabeth Pukuta, Sunday A. Omilabu, Festus D. Adu, Jean-Jacques Muyembe Tamfum, and Claude P. MullerComments to Author 
Author affiliations: Centre de Recherche Publique–Santé/Laboratoire National de Santé, Luxembourg, Luxembourg (J.R. Kremer, C.P. Muller); Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo (E. Nkwembe, E. Pukuta, J.-J.M. Tamfum); Lagos State University, Lagos, Nigeria (A.O.B. Oyefolu); National Institute for Communicable Diseases, Johannesburg, South Africa (S.B. Smit); University of Lagos, Lagos (S.A. Omilabu); University of Ibadan, Ibadan, Nigeria (F.D. Adu)

Main Article

Figure 4

Phylogenetic tree showing a comparison of genotype B3 strains of measles virus (MV) from Nigeria 1997–1998 and 2003–2005 (boldface) and representative genotype B3 strains from other countries in Africa available in GenBank (accession numbers in brackets) and World Health Organization (WHO) reference strains of genotypes B3.1, B3.2, and B2 (italics). Naming of MV strains and tree calculation were performed on the basis of the 450-nt region that codes for the C-terminus of the MV N protein by usin

Figure 4. Phylogenetic tree showing a comparison of genotype B3 strains of measles virus (MV) from Nigeria 1997–1998 and 2003–2005 (boldface) and representative genotype B3 strains from other countries in Africa available in GenBank (accession numbers in brackets) and World Health Organization (WHO) reference strains of genotypes B3.1, B3.2, and B2 (italics). Naming of MV strains and tree calculation were performed on the basis of the 450-nt region that codes for the C-terminus of the MV N protein by using MEGA4 software (24) and the neighbor-joining method (Kimura 2-parameter, 1,000 bootstraps). Scale bar indicates nucleotide substitutions per site.

Main Article

References
  1. Otten  M, Kezaala  R, Fall  A, Masresha  B, Martin  R, Cairns  L, Public-health impact of accelerated measles control in the WHO African Region 2000–03. Lancet. 2005;366:8329. DOIPubMedGoogle Scholar
  2. Grais  RF, Dubray  C, Gerstl  S, Guthmann  JP, Djibo  A, Nargaye  KD, Unacceptably high mortality related to measles epidemics in Niger, Nigeria, and Chad. PLoS Med. 2007;4:e16. DOIPubMedGoogle Scholar
  3. Schimmer  B, Ihekweazu  C. Polio eradication and measles immunisation in Nigeria. Lancet Infect Dis. 2006;6:635. DOIPubMedGoogle Scholar
  4. World Health Organization. Progress in global measles control and mortality reduction, 2000–2006. Wkly Epidemiol Rec. 2007;82:41824.PubMedGoogle Scholar
  5. World Health Organization. WHO vaccine-preventable diseases: monitoring system 2006 global summary [cited 2010 Aug 15]. http://www.who.int/vaccines-documents/GlobalSummary/GlobalSummary.pdf
  6. World Health Organization. Impact of measles control activities in the WHO African Region, 1999–2005. Wkly Epidemiol Rec. 2006;81:36571.PubMedGoogle Scholar
  7. Centers for Disease Control and Prevention. Progress toward measles control—African region, 2001–2008. MMWR Morb Mortal Wkly Rep. 2009;58:103641.PubMedGoogle Scholar
  8. Muller  CP, Mulders  MN. Molecular epidemiology of measles virus. In: Leitner T, editor. The molecular epidemiology of human viruses. Boston: Kluwer Academic Publishers; 2002. p. 237–72.
  9. Riddell  MA, Rota  JS, Rota  PA. Review of the temporal and geographical distribution of measles virus genotypes in the prevaccine and postvaccine eras. Virol J. 2005;2:87. DOIPubMedGoogle Scholar
  10. Hanses  F, Truong  AT, Ammerlaan  W, Ikusika  O, Adu  F, Oyefolu  AO, Molecular epidemiology of Nigerian and Ghanaian measles virus isolates reveals a genotype circulating widely in western and central Africa. J Gen Virol. 1999;80:8717.PubMedGoogle Scholar
  11. Lemma  E, Smit  SB, Beyene  B, Nigatu  W, Babaniyi  OA. Genetic characterization and progression of B3 measles genotype in Ethiopia: a study of five measles outbreak cases. Ethiop Med J. 2008;46:7985.PubMedGoogle Scholar
  12. Rota  J, Lowe  L, Rota  P, Bellini  W, Redd  S, Dayan  G, Identical genotype B3 sequences from measles patients in 4 countries, 2005. Emerg Infect Dis. 2006;12:177981.PubMedGoogle Scholar
  13. Gouandjika-Vasilache  I, Waku-Kouomou  D, Menard  D, Beyrand  C, Guye  F, Ngoay-Kossy  JC, Cocirculation of measles virus genotype B2 and B3.1 in Central African Republic during the 2000 measles epidemic. J Med Virol. 2006;78:96470. DOIPubMedGoogle Scholar
  14. Mbugua  FM, Okoth  FA, Gray  M, Kamau  T, Kalu  A, Eggers  R, Molecular epidemiology of measles virus in Kenya. J Med Virol. 2003;71:599604. DOIPubMedGoogle Scholar
  15. Mulders  MN, Nebie  YK, Fack  F, Kapitanyuk  T, Sanou  O, Valea  DC, Limited diversity of measles field isolates after a national immunization day in Burkina Faso: progress from endemic to epidemic transmission? J Infect Dis. 2003;187(Suppl 1):S27782. DOIPubMedGoogle Scholar
  16. Kouomou  DW, Nerrienet  E, Mfoupouendoun  J, Tene  G, Whittle  H, Wild  TF. Measles virus strains circulating in Central and West Africa: geographical distribution of two B3 genotypes. J Med Virol. 2002;68:43340. DOIPubMedGoogle Scholar
  17. El Mubarak  HS, van de Bildt  MW, Mustafa  OA, Vos  HW, Mukhtar  MM, Ibrahim  SA, Genetic characterization of wild-type measles viruses circulating in suburban Khartoum, 1997–2000. J Gen Virol. 2002;83:143743.PubMedGoogle Scholar
  18. Muwonge  A, Nanyunja  M, Rota  PA, Bwogi  J, Lowe  L, Liffick  SL, New measles genotype, Uganda. Emerg Infect Dis. 2005;11:15226.PubMedGoogle Scholar
  19. Rota  PA, Bloom  AE, Vanchiere  JA, Bellini  WJ. Evolution of the nucleoprotein and matrix genes of wild-type strains of measles virus isolated from recent epidemics. Virology. 1994;198:72430. DOIPubMedGoogle Scholar
  20. Rota  PA, Featherstone  DA, Bellini  WJ. Molecular epidemiology of measles virus. Curr Top Microbiol Immunol. 2009;330:12950. DOIPubMedGoogle Scholar
  21. World Health Organization. Manual for the laboratory diagnosis of measles and rubella infection. Geneva: The Organization; 2006.
  22. Santibanez  S, Tischer  A, Heider  A, Siedler  A, Hengel  H. Rapid replacement of endemic measles virus genotypes. J Gen Virol. 2002;83:2699708.PubMedGoogle Scholar
  23. Thompson  JD, Gibson  TJ, Higgins  DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2002;Chapter 2:Unit 2.3. Medline
  24. Tamura  K, Dudley  J, Nei  M, Kumar  S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:15969. DOIPubMedGoogle Scholar
  25. Grais  RF, Ferrari  MJ, Dubray  C, Fermon  F, Guerin  PJ. Exploring the time to intervene with a reactive mass vaccination campaign in measles epidemics. Epidemiol Infect. 2006;134:8459. DOIPubMedGoogle Scholar
  26. Ferrari  MJ, Grais  RF, Bharti  N, Conlan  AJ, Bjornstad  ON, Wolfson  LJ, The dynamics of measles in sub-Saharan Africa. Nature. 2008;451:67984. DOIPubMedGoogle Scholar
  27. Gay  NJ. The theory of measles elimination: implications for the design of elimination strategies. J Infect Dis. 2004;189(Suppl 1):S2735. DOIPubMedGoogle Scholar
  28. Nojiri  S, Vynnycky  E, Gay  N. Interpreting changes in measles genotype: the contribution of chance, migration and vaccine coverage. BMC Infect Dis. 2008;8:44. DOIPubMedGoogle Scholar
  29. Zhang  Y, Zhen  Z, Rota  PA, Jiang  X, Hu  J, Wang  J, Molecular epidemiology of measles viruses in China 1995–2003. Virol J. 2007;4:14. DOIPubMedGoogle Scholar
  30. Anderson  RM, May  RM. Directly transmitted infections diseases: control by vaccination. Science. 1982;215:105360. DOIPubMedGoogle Scholar
  31. Centers for Disease Control and Prevention. Update: global measles control and mortality reduction–worldwide, 1991–2001. MMWR Morb Mortal Wkly Rep. 2003;52:4715.PubMedGoogle Scholar
  32. Dubray  C, Gervelmeyer  A, Djibo  A, Jeanne  I, Fermon  F, Soulier  MH, Late vaccination reinforcement during a measles epidemic in Niamey, Niger (2003–2004). Vaccine. 2006;24:39849. DOIPubMedGoogle Scholar
  33. Grais  RF, Conlan  AJ, Ferrari  MJ, Djibo  A, Le Menach  A, Bjornstad  ON, Time is of the essence: exploring a measles outbreak response vaccination in Niamey, Niger. J R Soc Interface. 2008;5:6774. DOIPubMedGoogle Scholar
  34. Grais  RF, Ferrari  MJ, Dubray  C, Bjornstad  ON, Grenfell  BT, Djibo  A, Estimating transmission intensity for a measles epidemic in Niamey, Niger: lessons for intervention. Trans R Soc Trop Med Hyg. 2006;100:86773. DOIPubMedGoogle Scholar
  35. Smit  SB, Hardie  D, Tiemessen  CT. Measles virus genotype B2 is not inactive: evidence of continued circulation in Africa. J Med Virol. 2005;77:5507. DOIPubMedGoogle Scholar

Main Article

Page created: March 08, 2011
Page updated: March 08, 2011
Page reviewed: March 08, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external