Volume 16, Number 3—March 2010
Research
Blood Meal Analysis to Identify Reservoir Hosts for Amblyomma americanum Ticks
Table 1
Probe ID | Nucleotide sequence (5′ → 3′) | Target organism (RNA genes) | Reference sequence |
---|---|---|---|
Ptg011 | aacatgaacatctaaaaacataaa | Borrelia garinii (23S–5S) | * |
Ptg012 | aacatttaaaaaataaattcaagg | B. afzelii (23S–5S) | * |
Ptg013 | cattaaaaaaatataaaaaataaatttaagg | B. valaisiana (23S–5S) | * |
Ptg009 | ctttgaccatatttttatcttcca | B. burgdorferi s.l. (23S––5S) | * |
Ptg010 | aacaccaatatttaaaaaacataa | B. burgdorferi s.s. (23S–5S) | * |
Ptg003 | cgaacttctgggtcaagac | B. burgdorferi s.l. (16S) | † |
Ptg020 | agataactactctccgtttg | B. lonestari (16S) | AY166715 |
Ptg022 | tcctaatagggggagtc | Ehrlichia chaffeensis (16S) | M73222 |
Ptg023 | cttttaacagagggagtca | E. ewingii (16S) | M73227 |
Ptg024 | tcctaacagggggagtc | E. canis/ovina/muris (16S) | AY394465, AY318946, ABO13009 |
Ptg007 | tggggattttttatctctgtg | Anaplasma phagocytophilum (16S) | † |
Ptg021 | ctaccactgacgctgat | Rickettsia rickettsii (16S) | DQ150694 |
Ptg027 | cttcggaacgcagtgac | Francisella tularensis + F. philomiragia (16S) | Z21932, Z21933 |
Ptg026 | cttggggaggacgttac | F. tularensis subsp. tularensis (16S) | Z21932 |
Ptg029 | gcctatragttaatagcttgt | F. philomiragia (16S) | Z21933 |
Ptg028 | tcctgcgatctttctaga | F. endosymbiont of Dv (16S) | AF166256 |
Ptg032 | catccagggaagtaagc | Arsenophonus spp. (16S) | AY265347 |
Ptg030 | gctacaactgacactgatg | R. endosymbiont of Dv (16S) | AY375427 |
Ptg031 | tacaactgacgctaatgc | R. amblyommii + Rickettsia sp. (16S) | U11012 |
Ptg035 | tcggaagattatctttcgg | R. amblyommii (16S) | U11012 |
References
- Jones KE, Patel NG, Levy MA. Global trends in emerging infectious diseases. Nature. 2008;451:990–4. DOIPubMedGoogle Scholar
- Ostfeld RS, Keesing F, Schauber EM, Schmidt KA. The ecological context of infectious disease: diversity, habitat fragmentation, and Lyme disease risk in North America. In: Aguirre A, Ostfeld RS, Tabor G, House CA, Pearl M, editors. Conservation medicine: ecological health in practice. New York: Oxford University Press; 2002. p. 207–19.
- Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Unhealthy landscape: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect. 2004;112:1092–8.PubMedGoogle Scholar
- Dobson A, Cattadori I, Holt RD, Ostfeld RS, Keesing F, Krichbaum K, Sacred cows and sympathetic squirrels: the importance of biological diversity to human health. PLoS Med. 2006;3:e231. DOIPubMedGoogle Scholar
- Childs JE, Paddock CD. The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States. Annu Rev Entomol. 2003;48:307–37. DOIPubMedGoogle Scholar
- Long SW, Zhang X, Zhang J, Ruble RP, Teel P, Yu XJ. Evaluation of transovarial transmission and transmissibility of Ehrlichia chaffeensis (Rickettsiales: Anaplasmataceae) in Amblyomma americanum (Acari: Ixodidae). J Med Entomol. 2003;40:1000–4. DOIPubMedGoogle Scholar
- Stromdahl EY, Vince MA, Billingsley PM, Dobbs NA, Williamson PC. Rickettsia amblyommii infecting Amblyomma americanum larvae. Vector Borne Zoonotic Dis. 2008;8:1–9. DOIPubMedGoogle Scholar
- Paddock CD, Yabsley MJ. Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States. Curr Top Microbiol. 2007;315:289–324. DOIGoogle Scholar
- LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci U S A. 2003;100:567–71. DOIPubMedGoogle Scholar
- Brisson D, Dykhuizen DE, Ostfeld RS. Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic. Proc R Soc Lond B Biol Sci. 2008;275:227–35. DOIGoogle Scholar
- Kent RJ. Molecular methods for arthropod blood meal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour. 2009;9:4–18. DOIGoogle Scholar
- Pichon B, Egan E, Rogers M, Gray J. Detection and identification of pathogens and host DNA in unfed host-seeking Ixodes ricinus L. J Med Entomol. 2003;40:723–31. DOIPubMedGoogle Scholar
- Pichon B, Rogers M, Egan D, Gray J. Blood meal analysis for the identification of reservoir hosts for tick-borne pathogens in Ireland. Vector Borne Zoonotic Dis. 2005;5:172–80. DOIPubMedGoogle Scholar
- Morán Cadenas FM, Rais O, Humair PF, Douet V, Moret J, Gern L. Identification of host blood meal source and Borrelia burgdorferi sensu lato in field-collected Ixodes ricinus ticks in Chaumont (Switzerland). J Med Entomol. 2007;44:1109–17. DOIPubMedGoogle Scholar
- Humair PF, Douet V, Cadenas FM, Schouls LM, Van de Pol I, Gern L. Molecular identification of blood meal source in Ixodes ricinus ticks using 12S rDNA as a genetic marker. J Med Entomol. 2007;44:869–80. DOIPubMedGoogle Scholar
- Gray JS, Kahl O, Lane RS, Stanek G, eds. Lyme borreliosis: biology, epidemiology and control. Oxford (UK): CABI Publishing; 2002.
- Schulze TL, Jordan RA, Hung RW. Biases associated with several sampling methods used to estimate abundance of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). J Med Entomol. 1997;34:615–23.PubMedGoogle Scholar
- Keirans JE, Durden LA. Illustrated key to nymphs of the tick genus Amblyomma (Acari: Ixodidae) found in the United States. J Med Entomol. 1998;35:489–95.PubMedGoogle Scholar
- Hammer B, Moter A, Kahl O, Alberti G, Gobel UB. Visualization of Borrelia burgdorferi sensu lato by fluorescence in situ hybridization (FISH) on whole-body sections of Ixodes ricinus ticks and gerbil skin biopsies. Microbiol. 2001;147:1425–36.
- Black WC IV, Piesman J. A phylogeny of hard and soft tick taxa based on mitochondrial 16S ribosomal DNA sequences. Proc Natl Acad Sci U S A. 1994;91:10034–8. DOIPubMedGoogle Scholar
- DeShields A, Borman-Shoap E, Peters JE, Gaudreault-Keener M, Arens MQ, Storch GA. Detection of pathogenic ehrlichia in ticks collected at acquisition sites of human ehrlichiosis in Missouri. Mo Med. 2004;101:132–7.PubMedGoogle Scholar
- Rijpkema SG, Molekenboer MJ, Schouls LM, Jongejan F, Schellekens JG. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol. 1995;33:3091–5.PubMedGoogle Scholar
- Bacon RM, Gilmore RD Jr, Quintana M, Piesman J, Johnson BJ. DNA evidence of Borrelia lonestari in Amblyomma americanum (Acari: Ixodidae) in southeast Missouri. J Med Entomol. 2003;40:590–2. DOIPubMedGoogle Scholar
- Mixson TR, Campbell SR, Gill JS, Ginsberg HS, Reichard MV, Schulze TL, Prevalence of Ehrlichia, Borrelia, and Rickettsial agents in Amblyomma americanum (Acari: Ixodidae) collected from nine states. Vector-Borne Zoonot. 2006;43:1261–8.
- Stromdahl EY, Williamson PC, Kollars TM, Evans SR, Barry RK, Vince MA, Evidence for Borrelia lonestari DNA in Amblyomma americanum (Acari: Ixodidae) removed from humans. J Clin Microbiol. 2003;41:5557–62. DOIPubMedGoogle Scholar
- Yabsley MJ, Varela AS, Tate CM, Dugan VG, Stallknecht DE, Little SE, Ehrlichia ewingii infection in white-tailed deer (Odocoileus virginianus). Emerg Infect Dis. 2002;8:668–71.PubMedGoogle Scholar
- Arens MQ, Liddell AM, Buening G, Gaudreault-Keener M, Sumner JW, Comer JA, Detection of Ehrlichia spp. in the blood of wild white-tailed deer in Missouri by PCR assay and serologic analysis. J Clin Microbiol. 2003;41:1263–5. DOIPubMedGoogle Scholar
- Moore VA IV, Varela AS, Yabsley MJ, Davidson WR, Little SE. Detection of Borrelia lonestari, putative agent of southern tick-associated rash illness, in white-tailed deer (Odocoileus virginianus) from the southeastern United States. J Clin Microbiol. 2003;41:424–7. DOIPubMedGoogle Scholar
- Brunner JL, LoGuidice KL, Ostfeld RS. Estimating reservoir competence of Borrelia burgdorferi hosts: prevalence and infectivity, sensitivity, and specificity. J Med Entomol. 2008;45:139–47. DOIPubMedGoogle Scholar
Page created: December 14, 2010
Page updated: December 14, 2010
Page reviewed: December 14, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.