Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 3—March 2010

Rare Influenza A (H3N2) Variants with Reduced Sensitivity to Antiviral Drugs

Clyde Dapat1Comments to Author , Yasushi Suzuki1, Reiko Saito, Yadanar Kyaw, Yi Yi Myint, Nay Lin, Htun Naing Oo, Khin Yi Oo, Ne Win, Makoto Naito, Go Hasegawa, Isolde C. Dapat, Hassan Zaraket, Tatiana Baranovich, Makoto Nishikawa, Takehiko Saito, and Hiroshi Suzuki
Author affiliations: Niigata University, Niigata, Japan (C. Dapat, Y. Suzuki, R. Saito, M. Naito, G. Hasegawa, I.C. Dapat, H. Zaraket, T. Baranovich, H. Suzuki); National Institute of Animal Health, Tsukuba City, Japan (T. Saito); Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata (M. Nishikawa); Sanpya Hospital, Yangon, Myanmar (Y. Kyaw); National Health Laboratory, Yangon (K.Y. Oo, N. Win); Central Myanmar Department of Medical Research, Nay Pyi Taw, Myanmar (Y.Y. Myint, N. Lin, H.N. Oo)

Cite This Article


In 2007 and 2008 in Myanmar, we detected influenza viruses A (H3N2) that exhibited reduced sensitivity to both zanamivir and amantadine. These rare and naturally occurring viruses harbored a novel Q136K mutation in neuraminidase and S31N mutation in M2.

Adamantanes and neuraminidase inhibitors (NAIs) are the 2 classes of drugs indicated for preventing or treating influenza virus infection. In 2005, the high prevalence of influenza viruses A (H3N2) with S31N mutation in M2 limited the effectiveness of amantadine (1,2). In 2008, the emergence of subtype H1N1 with H274Y mutation in neuraminidase (NA) raised concerns about the use of oseltamivir (3,4). On the other hand, the incidence of zanamivir-resistant viruses was low (5). In 1998, 1 case of zanamivir-resistant influenza B virus, which was isolated from an immunocompromised child who underwent prolonged zanamivir treatment, was reported (6). In 2008, subtype H3N2 with D151A/V mutations in NA demonstrated reduced zanamivir sensitivity by chemiluminescent NAI assay (5). Recently, zanamivir-resistant subtype H1N1 isolates with a novel Q136K mutation in NA were isolated in Oceania and Southeast Asia (7).

We report the detection of influenza viruses A (H3N2) harboring a Q136K mutation in NA and an S31N mutation in M2, which respectively confer reductions in zanamivir and amantadine susceptibility. In 2007 and 2008, we performed phenotypic and genotypic analyses in characterizing these viruses from Myanmar.

The Study

Nasopharyngeal swabs were collected from patients with influenza-like illness at Sanpya Hospital in Yangon, Myanmar, and outpatient clinics affiliated with the Department of Medical Research (Central Myanmar) in Nay Pyi Taw. Rapid test kit–positive samples were sent to Niigata University, Japan, for subsequent analyses. Virus isolation and subtyping PCR were performed as previously described (8). The NAI susceptibility test was performed by a fluorescence-based NA activity assay that measures the 50% inhibitory concentration (IC50) by using zanamivir and oseltamivir carboxylate (9). All samples were assayed in duplicates in >2 independent experiments. A sample was considered an extreme outlier if its IC50 value was 10× higher than the mean values for sensitive strains with >3 interquartile range from the 25th and 75th percentiles in the box-and-whisker plot analysis (9). So far, all known NAI-resistant viruses are extreme outliers (10). Screening for S31N mutation in M2 was done by cycling probe real-time PCR (11). Sequencing and phylogenetic analysis of the hemagglutinin (HA) and NA genes were performed as previously described (8).

A total of 253 and 802 rapid test kit–positive samples were collected in Myanmar in 2007 and 2008, respectively. Of these, 64 isolates of subtype H3N2 were detected in 2007 and 211 in 2008. NAI susceptibility assay showed 1 (1.5%) isolate (A/Myanmar/M187/2007) with a zanamivir IC50 value of 59.72 nM, which was collected in August 2007, and 1 (0.5%) isolate (A/Myanmar/M114/2008) with a zanamivir IC50 of 33.37 nM, which was collected in July 2008. These isolates respectively demonstrated a 53× and 30× reduction in zanamivir susceptibility (Table) and were extreme outliers (data not shown). On the basis of cycling probe real-time PCR assay, these viruses had an S31N mutation in M2, which confers resistance to amantadine. All subtype H3N2 viruses analyzed in this study remain sensitive to oseltamivir carboxylate (Table).

Figure 1

Thumbnail of Phylogenetic analysis of the hemagglutinin (HA) (A) and neuraminidase (B) genes of influenza virus A (H3N2) isolates in Myanmar in 2007 and 2008. Trees were generated by using the neighbor-joining method. Bootstrap values >70% of 1,000 replicates and amino acid changes that characterize a branch are indicated on the left side of the node. Amantadine-resistant isolates with S31N mutation in M2 are marked with asterisks, and isolates with reduced sensitivity to zanamivir with Q136K

Figure 1. Phylogenetic analysis of the hemagglutinin (HA) (A) and neuraminidase (B) genes of influenza virus A (H3N2) isolates in Myanmar in 2007 and 2008. Trees were generated by using the neighbor-joining method....

Figure 2

Thumbnail of Detection of Q136K substitution in NA by sequencing in primary samples and virus isolates. Arrows indicate the first peak of the codon encoding amino acid position 136. Comparison of the sequence chromatogram showed a mixed population of bases in both original clinical samples and virus isolates, with a dominant peak for 136K (AAG) mutants, compared with wild-type 136Q (CAG) viruses. NA, neuraminidase.

Figure 2. Detection of Q136K substitution in NA by sequencing in primary samples and virus isolates. Arrows indicate the first peak of the codon encoding amino acid position 136. Comparison of the sequence...

Phylogenetic analysis of the HA and NA genes showed that the isolates with reduced sensitivity to zanamivir belonged to 2 distinct clusters (Figure 1). These viruses accumulated 2 and 3 amino acid (aa) substitutions in HA and 6 and 2 aa changes in NA in 2007 and 2008 (Figure 1), respectively. Epidemiologic and sequencing data did not suggest any link between the cases. Analysis of the NA gene showed that the isolates with reduced sensitivity to zanamivir had a glutamine (Q) to lysine (K) substitution at aa position 136. Sequence chromatograms showed a heterogeneous population of virus possessing either Q or K at position 136, with a dominant peak for the K136 mutant (Figure 2). Direct sequencing of primary samples showed a similar profile of chromatogram with a higher signal for the K136 mutant and a minor peak for the Q136 wild-type strain (Figure 2). The rest of the zanamivir-sensitive isolates in 2007 and 2008 had the Q136 genotype, and no NAI-resistant-associated mutations were detected elsewhere in the NA gene.


In this study, we detected a novel influenza virus A (H3N2) with Q136K mutation in NA and S31N mutation in M2, which demonstrated reduced susceptibility to both zanamivir and amantadine but remained susceptible to oseltamivir. These Q136K viruses were isolated at a low frequency (<1.5%) in Myanmar in 2007 and 2008. Phylogenetic analysis showed that these viruses were already amantadine-resistant with S31N mutation in M2. Amantadine-resistant viruses with S31N mutation have been the predominant circulating strains among subtype H3N2 viruses in Myanmar since 2005 (8). The Q136K substitution in NA was probably generated by spontaneous point mutation. The HA and NA gene sequences of Q136K mutants were submitted to GenBank under accession nos. A/Myanmar/M187/2007: FJ229893 (HA), FJ229860 (NA) and A/Myanmar/M114/2008: GQ478854 (HA), GQ478863 (NA).

Hurt et al. recently reported the characterization of zanamivir-resistant subtype H1N1 with Q136K mutation in NA (7). Zanamivir IC50s of these viruses ranged from 6 nM to 238 nM (7), which differed from the 1–60 nM range of subtype H3N2 viruses obtained in this study. This finding may be due to differences in subtype and variations in the assay. The Q136K mutation was not detected in the primary clinical samples by sequencing (7), however, in our study, the Q136K mutation in subtype H3N2 isolates was detected in primary samples. Comparison of the sequence chromatograms between original samples and virus isolates showed a similar profile, suggesting that the Q136K mutants were present in primary samples of subtype H3N2 isolates. The presence of Q136K variants in primary samples appears to be subtype-specific because these mutants were present in very low proportions among subtype H1N1 viruses (12). To determine whether mutations exist in other gene segments associated with Q136K mutations, we performed a full genome analysis of Q136K mutants and wildtype viruses. We found no additional mutations in Q136K strains, which suggest that the genetic background of these viruses can compensate for the K136 mutation. However, further study is needed to confirm whether the accumulated 5 aa changes in HA and 8 substitutions in NA would compensate for the Q136K mutation.

We searched the database for NA sequences of influenza viruses A (H3N2) with Q136K mutation that are available on GenBank. Of the 3,381 sequences obtained, 4 sequences from human influenza, which were isolated in 1995, 2003, 2004, and 2007, and 1 sequence from swine influenza, which was isolated in Japan in 1997, contained the Q136K substitution. Sequences from Q136K mutants isolated before 2007 showed no mutations in the M2 gene. The data indicate that these viruses occur naturally because some of the isolates in the database were obtained before introduction of zanamivir into clinical practice in 1999 in Australia, New Zealand, United States, and Europe (9,13). In addition, Myanmar patients who shed these Q136K viruses did not receive any NAIs. The clinical relevance of Q136K mutants is unknown. Further study is needed to evaluate the effectiveness of zanamivir in patients infected with Q136K mutants.

Continued monitoring of viruses with reduced sensitivity to NAIs and adamantanes is needed, and routine surveillance should include both phenotypic and genotypic assays. The Q136K substitution in NA should be used as a molecular marker associated with reduced NAI susceptibility not only in subtype H1N1 isolates but also among subtype H3N2 isolates.

Mr Dapat is a PhD student in the Department of Public Health, Niigata University, Japan. He is currently working on the laboratory surveillance of human influenza viruses. His research interests include virology and immunology.



We thank the staff of the Chest Medical Unit of Sanpya Hospital, Respiratory Medicine Department of Yangon General Hospital, and Department of Medical Research for sample collection; Akemi Watanabe for excellent technical support; and Akinori Miyashita and Ryozo Kuwano for support with DNA sequencing.

This work was supported by the Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology, Japan.



  1. Barr  IG, Hurt  A, Iannello  P, Tomasov  C, Deed  N, Komadina  N. Increased adamantane resistance in influenza A(H3) viruses in Australia and neighbouring countries in 2005. Antiviral Res. 2007;73:1127. DOIPubMedGoogle Scholar
  2. Saito  R, Li  D, Suzuki  H. Amantadine-resistant influenza A (H3N2) virus in Japan, 2005–2006. N Engl J Med. 2007;356:3123. DOIPubMedGoogle Scholar
  3. Hauge  SH, Dudman  S, Borgen  K, Lackenby  A, Hungnes  O. Oseltamivir-resistant influenza viruses A (H1N1), Norway, 2007–08. Emerg Infect Dis. 2009;15:15562. DOIPubMedGoogle Scholar
  4. Hurt  AC, Ernest  J, Deng  Y, Iannello  P, Besselaar  T, Birch  C, Emergence and spread of oseltamivir-resistant A (H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res. 2009;83:903. DOIPubMedGoogle Scholar
  5. Sheu  TG, Deyde  V, Okomo-Adhiambo  M, Garten  R, Xu  X, Bright  R, Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother. 2008;52:328492. DOIPubMedGoogle Scholar
  6. Gubareva  LV, Matrosovich  M, Brenner  M, Bethell  R, Webster  R. Evidence for zanamivir resistance in an immunocompromised child infected with influenza B virus. J Infect Dis. 1998;178:125762. DOIPubMedGoogle Scholar
  7. Hurt  AC, Holien  J, Parker  M, Kelso  A, Barr  I. Zanamivir-resistant influenza viruses with a novel neuraminidase mutation. J Virol. 2009;83:1036673. DOIPubMedGoogle Scholar
  8. Dapat  C, Saito  R, Kyaw  Y, Naito  M, Hasegawa  G, Suzuki  Y, Epidemiology of human influenza A and B viruses in Myanmar from 2005 to 2007. Intervirology. 2009;52:31020. DOIPubMedGoogle Scholar
  9. Hurt  AC, Barr  I, Hartel  G, Hampson  A. Susceptibility of human influenza viruses from Australasia and South East Asia to the neuraminidase inhibitors zanamivir and oseltamivir. Antiviral Res. 2004;62:3745. DOIPubMedGoogle Scholar
  10. Tashiro  M, McKimm-Breschkin  J, Saito  T, Klimov  A, Macken  C, Zambon  M, Surveillance for neuraminidase-inhibitor-resistant influenza viruses in Japan, 1996–2007. Antivir Ther. 2009;14:75161. DOIPubMedGoogle Scholar
  11. Suzuki  Y, Saito  R, Zaraket  H, Dapat  C, Caperig-Dapat  I, Suzuki  H. Rapid and specific detection of amantadine-resistant Ser31Asn mutated influenza A viruses by the cycling probe method. J Clin Microbiol. 2009; Epub ahead of print.
  12. Okomo-Adhiambo  M, Nguyen  HT, Sleeman  K, Sheu  TG, Deyde  VM, Garten  RJ, Host cell selection of influenza neuraminidase variants: implications for drug resistance monitoring in A (H1N1) viruses. Antiviral Res. 2009; Epub ahead of print.
  13. McKimm-Breschkin  J, Trivedi  T, Hampson  A, Hay  A, Klimov  A, Tashiro  M, Neuraminidase sequence analysis and susceptibilities of influenza virus clinical isolates to zanamivir and oseltamivir. Antimicrob Agents Chemother. 2003;47:226472. DOIPubMedGoogle Scholar




Cite This Article

DOI: 10.3201/eid1603.091321

1These authors contributed equally to this article.

Table of Contents – Volume 16, Number 3—March 2010

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Clyde Dapat, Department of Public Health, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata City, Niigata Prefecture, 951-8510, Japan

Send To

10000 character(s) remaining.


Page created: December 14, 2010
Page updated: December 14, 2010
Page reviewed: December 14, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.