Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 10—October 2011

Plasmodium knowlesi Malaria in Humans and Macaques, Thailand

Somchai JongwutiwesComments to Author , Pattakorn Buppan, Rattiporn Kosuvin, Sunee Seethamchai, Urassaya Pattanawong, Jeeraphat Sirichaisinthop, and Chaturong Putaporntip

Author affiliations: Chulalongkorn University, Bangkok, Thailand (S. Jongwutiwes, P. Buppan, R. Kosuvin, U. Pattanawong, C. Putaporntip); Naresuan University, Phitsanulok, Thailand (S. Seethamchai); Vector Borne Disease Training Center, Saraburi, Thailand (J. Sirichaisinthop)

Main Article

Figure 2

Maximum-likelihood tree inferred from the complete merozoite surface protein 1 gene sequences of Plasmodium knowlesi from humans (red circles) and macaques (blue circles). The tree is drawn to scale, and branch lengths are measured in number of substitutions per site by using MEGA version 5.01 (14). Bootstrap values >50% from 1,000 iterations are shown. Human isolates are from the following provinces: Narathiwat (NR280, NR234, and NR522); Yala (YL975 and YL978); Chantaburi (CT157, CT190, and

Figure 2. Maximum-likelihood tree inferred from the complete merozoite surface protein 1 gene sequences of Plasmodium knowlesi from humans (red circles) and macaques (blue circles). The tree is drawn to scale, and branch lengths are measured in number of substitutions per site by using MEGA version 5.01 (14). Bootstrap values >50% from 1,000 iterations are shown. Human isolates are from the following provinces: Narathiwat (NR280, NR234, and NR522); Yala (YL975 and YL978); Chantaburi (CT157, CT190, and CT273); and Prachuab Khirikhan (BMC151, MC128, and DQ220743). Isolates HB3, HB92, HB126, HB132, and HB149 are from macaques in Narathiwat Province. GenBank accession nos. are shown after isolate names.

Main Article

  1. Coatney  GR, Collins  WE, Warren  M, Contacos  PG. The primate malarias [CD-ROM]. Version 1.0 (originally published in 1971). Atlanta: Centers for Disease Control and Prevention; 2003.
  2. Chin  W, Contacos  PG, Coatney  GR, Kimball  HR. A naturally acquired quotidian-type malaria in man transferable to monkeys. Science. 1965;149:865. DOIPubMedGoogle Scholar
  3. Jongwutiwes  S, Putaporntip  C, Iwasaki  T, Sata  T, Kanbara  H. Naturally acquired Plasmodium knowlesi malaria in human, Thailand. Emerg Infect Dis. 2004;10:22113.PubMedGoogle Scholar
  4. Singh  B, Kim Sung  L, Matusop  A, Radhakrishnan  A, Shamsul  SS, Cox-Singh  J, A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet. 2004;363:101724. DOIPubMedGoogle Scholar
  5. Putaporntip  C, Buppan  P, Jongwutiwes  S. Improved performance with saliva and urine as alternative DNA sources for malaria diagnosis by mitochondrial DNA-based PCR assays. Clin Microbiol Infect. 2011; [Epub ahead of print].
  6. Cox-Singh  J, Davis  TM, Lee  KS, Shamsul  SS, Matusop  A, Ratnam  S, Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis. 2008;46:16571. DOIPubMedGoogle Scholar
  7. Putaporntip  C, Hongsrimuang  T, Seethamchai  S, Kobasa  T, Limkittikul  K, Cui  L, Differential prevalence of Plasmodium infections and cryptic Plasmodium knowlesi malaria in humans in Thailand. J Infect Dis. 2009;199:114350. DOIPubMedGoogle Scholar
  8. Daneshvar  C, Davis  TM, Cox-Singh  J, Rafa’ee  MZ, Zakaria  SK, Divis  PC, Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis. 2009;49:85260. DOIPubMedGoogle Scholar
  9. Thimasarn  K, Jatapadma  S, Vijaykadga  S, Sirichaisinthop  J, Wongsrichanalai  C. Epidemiology of malaria in Thailand. J Travel Med. 1995;2:5965. DOIPubMedGoogle Scholar
  10. Annual statistics, Division of Vector-Borne Diseases, Ministry of Public Health, Thailand [cited 2011 Feb 14].
  11. Putaporntip  C, Jongwutiwes  S, Thongaree  S, Seethamchai  S, Grynberg  P, Hughes  AL. Ecology of malaria parasites infecting Southeast Asian macaques: evidence from cytochrome b sequences. Mol Ecol. 2010;19:346676. DOIPubMedGoogle Scholar
  12. Putaporntip  C, Jongwutiwes  S, Iwasaki  T, Kanbara  H, Hughes  AL. Ancient common ancestry of the merozoite surface protein 1 of Plasmodium vivax as inferred from its homologue in Plasmodium knowlesi. Mol Biochem Parasitol. 2006;146:1058. DOIPubMedGoogle Scholar
  13. Thompson  JD, Gibson  TJ, Plewniak  F, Jeanmougin  F, Higgins  DG. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:487682. DOIPubMedGoogle Scholar
  14. Tamura  K, Peterson  D, Peterson  N, Stecher  G, Nei  M, Kumar  S. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011. [Epub ahead of print].
  15. Putaporntip  C, Jongwutiwes  S, Sakihama  N, Ferreira  MU, Kho  WG, Kaneko  A, Mosaic organization and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite surface protein-1 locus. Proc Natl Acad Sci U S A. 2002;99:1634853. DOIPubMedGoogle Scholar
  16. Zhou  G, Sirichaisinthop  J, Sattabongkot  J, Jones  J, Bjørnstad  ON, Yan  G, Spatio-temporal distribution of Plasmodium falciparum and P. vivax malaria in Thailand. Am J Trop Med Hyg. 2005;72:25662.PubMedGoogle Scholar
  17. Childs  DZ, Cattadori  IM, Suwonkerd  W, Prajakwong  S, Boots  M. Spatiotemporal patterns of malaria incidence in northern Thailand. Trans R Soc Trop Med Hyg. 2006;100:62331. DOIPubMedGoogle Scholar
  18. Sattabongkot  J, Tsuboi  T, Zollner  GE, Sirichaisinthop  J, Cui  L. Plasmodium vivax transmission: chances for control? Trends Parasitol. 2004;20:1928. DOIPubMedGoogle Scholar
  19. Somboon  P, Lines  J, Aramrattana  A, Chitprarop  U, Prajakwong  S, Khamboonruang  C. Entomological evaluation of community-wide use of lambdacyhalothrin-impregnated bed nets against malaria in a border area of north-west Thailand. Trans R Soc Trop Med Hyg. 1995;89:24854. DOIPubMedGoogle Scholar
  20. Apiwathnasor  C, Prommongkol  S, Samung  Y, Limrat  D, Rojruthai  B. Potential for Anopheles campestris (Diptera: Culicidae) to transmit malaria parasites in Pa Rai subdistrict (Aranyaprathet, Sa Kaeo Province), Thailand. J Med Entomol. 2002;39:5836. DOIPubMedGoogle Scholar
  21. Mayxay  M, Pukrittayakamee  S, Newton  PN, White  NJ. Mixed-species malaria infections in humans. Trends Parasitol. 2004;20:23340. DOIPubMedGoogle Scholar
  22. McKenzie  FE, Bossert  WH. Mixed-species Plasmodium infections of humans. J Parasitol. 1997;83:593600. DOIPubMedGoogle Scholar
  23. Price  RN, Simpson  JA, Nosten  F, Luxemburger  C, Hkirjaroen  L, ter Kuile  F, Factors contributing to anemia in uncomplicated falciparum malaria. Am J Trop Med Hyg. 2001;65:61422.PubMedGoogle Scholar
  24. Mason  DP, McKenzie  FE. Blood-stage dynamics and clinical implications of mixed Plasmodium vivaxPlasmodium falciparum infections. Am J Trop Med Hyg. 1999;61:36774.PubMedGoogle Scholar
  25. Gopinathan  VP, Subramanian  AR. Pernicious syndromes in Plasmodium infections. Med J Aust. 1982;2:56872.PubMedGoogle Scholar
  26. Mayxay  M, Pukritrayakamee  S, Chotivanich  K, Imwong  M, Looareesuwan  S, White  NJ. Identification of cryptic coinfection with Plasmodium falciparum in patients presenting with vivax malaria. Am J Trop Med Hyg. 2001;65:58892.PubMedGoogle Scholar
  27. May  J, Falusi  AG, Mockenhaupt  FP, Ademowo  OG, Olumese  PE, Bienzle  U, Impact of subpatent multi-species and multi-clonal plasmodial infections on anaemia in children from Nigeria. Trans R Soc Trop Med Hyg. 2000;94:399403. DOIPubMedGoogle Scholar
  28. Vythilingam  I, Noorazian  YM, Huat  TC, Jiram  AI, Yusri  YM, Azahari  AH, Plasmodium knowlesi in humans, macaques and mosquitoes in peninsular Malaysia. Parasit Vectors. 2008;1:26. DOIPubMedGoogle Scholar
  29. Vythilingam  I, Tan  CH, Asmad  M, Chan  ST, Lee  KS, Singh  B. Natural transmission of Plasmodium knowlesi to humans by Anopheles latens in Sarawak, Malaysia. Trans R Soc Trop Med Hyg. 2006;100:10878. DOIPubMedGoogle Scholar
  30. Chareonviriyaphap  T, Bangs  MJ, Ratanatham  S. Status of malaria in Thailand. Southeast Asian J Trop Med Public Health. 2000;31:22537.PubMedGoogle Scholar
  31. Nakazawa  S, Marchand  RP, Quang  NT, Culleton  R, Manh  ND, Maeno  Y. Anopheles dirus co-infection with human and monkey malaria parasites in Vietnam. Int J Parasitol. 2009;39:15337. DOIPubMedGoogle Scholar
  32. Sungvornyothin  S, Kongmee  M, Muenvorn  V, Polsomboon  S, Bangs  MJ, Prabaripai  A, Seasonal abundance and blood-feeding activity of Anopheles dirus sensu lato in western Thailand. J Am Mosq Control Assoc. 2009;25:42530. DOIPubMedGoogle Scholar
  33. Lee  KS, Cox-Singh  J, Brooke  G, Matusop  A, Singh  B. Plasmodium knowlesi from archival blood films: Further evidence that human infections are widely distributed and not newly emergent in Malaysian Borneo. Int J Parasitol. 2009;39:11258. DOIPubMedGoogle Scholar
  34. Van den Eede  P, Van  HN, Van Overmeir  C, Vythilingam  I, Duc  TN, Hung le X, et al. Human Plasmodium knowlesi infections in young children in central Vietnam. Malar J. 2009;8:249. DOIPubMedGoogle Scholar
  35. McKenzie  FE, Smith  DL, O’Meara  WP, Forney  JR, Magill  AJ, Permpanich  B, Fever in patients with mixed-species malaria. Clin Infect Dis. 2006;42:17138. DOIPubMedGoogle Scholar

Main Article

Page created: September 20, 2011
Page updated: September 20, 2011
Page reviewed: September 20, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.