Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 11—November 2011

Dynamics of Cholera Outbreaks in Great Lakes Region of Africa, 1978–2008

Didier Bompangue Nkoko, Patrick Giraudoux, Pierre-Denis Plisnier, Annie Mutombo Tinda, Martine Piarroux, Bertrand Sudre, Stephanie Horion, Jean-Jacques Muyembe Tamfum, Benoît Kebela Ilunga, and Renaud PiarrouxComments to Author 
Author affiliations: Université de Franche-Comté, Besançon, France (D. Bompangue Nkoko, P. Giraudoux, M. Piarroux, B. Sudre); Ministère de la Santé Publique, Kinshasa, Democratic Republic of Congo (D. Bompangue Nkoko, A. Mutombo Tinda, J.-J. Muyembe Tamfum, B. Kebela Ilunga); Royal Museum for Central Africa, Tervuren, Belgium (P.-D. Plisnier); Joint Research Centre of the European Commission, Ispra, Italy (S. Horion); Université de Kinshasa, Kinshasha (J.-J. Muyembe Tamfum); Université de la Méditerranée, Marseille, France (R. Piarroux); University Hospital La Timone, Marseille (R. Piarroux)

Main Article

Figure 2

Number of reports and localization of cholera outbreaks in the African Great Lakes region, 1999–2008, as reported by ProMED (11).

Figure 2. Number of reports and localization of cholera outbreaks in the African Great Lakes region, 1999–2008, as reported by ProMED (11).

Main Article

  1. Constantin de Magny  G, Colwell  R. Cholera and climate: a demonstrated relationship. Trans Am Clin Climatol Assoc. 2009;120:11928.PubMedGoogle Scholar
  2. Alam  M, Sultana  M, Nair  G, Siddique  A, Hasan  N, Sack  R, Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci U S A. 2007;104:178016. DOIPubMedGoogle Scholar
  3. Hashizume  M, Faruque  A, Wagatsuma  Y, Hayashi  T, Armstrong  B. Cholera in Bangladesh: climatic components of seasonal variation. Epidemiology. 2010;21:70610. DOIPubMedGoogle Scholar
  4. Ohtomo  K, Kobayashi  N, Sumi  A, Ohtomo  N. Relationship of cholera incidence to El Niño and solar activity elucidated by time-series analysis. Epidemiol Infect. 2010;138:99107. DOIPubMedGoogle Scholar
  5. Colwell  RR. Global climate and infectious disease: the cholera paradigm. Science. 1996;274:202531. DOIPubMedGoogle Scholar
  6. Piarroux  R, Barrais  R, Faucher  B, Haus  R, Piarroux  M, Gaudart  J, Understanding the cholera epidemic, Haiti. Emerg Infect Dis. 2011;17:11618. DOIPubMedGoogle Scholar
  7. Griffith  DC, Kelly-Hope  L, Miller  M. Review of reported cholera outbreaks worldwide, 1995–2005. Am J Trop Med Hyg. 2006;75:9737.PubMedGoogle Scholar
  8. World Health Organization. Global Task Force on Cholera Control. Weekly epidemiological record: cholera articles [cited 2010 Jan 12].
  9. World Health Organization. Global alert and response (GAR). WHO report on global surveillance of epidemic-prone infectious diseases. Chapter 4: cholera [cited 2011 Aug 26].
  10. Zuckerman  JN, Rombo  L, Fisch  A. The true burden and risk of cholera: implications for prevention and control. Lancet Infect Dis. 2007;7:52130. DOIPubMedGoogle Scholar
  11. ProMED–Mail. The International Society for Infectious Diseases [cited 2010 Jan 12].
  12. World Health Organization. Cholera, 2009. Wkly Epidemiol Rec. 2010;85:293308
  13. Legendre  P, Legendre  L. Numerical ecology. Amsterdam: Elsevier; 1998.
  14. Venables  WN, Ripley  BD. Modern applied statistics with S. 4th ed. New York: Springer; 2002.
  15. Rigby  RA, Stasinopoulos  DM. Generalized additive models for location, scale and shape. J R Stat Soc Ser C Appl Stat. 2005;54:50754. DOIGoogle Scholar
  16. Kulldorff  M. A spatial scan statistic. Comm Statist Theory Methods. 1997;26:148196. DOIGoogle Scholar
  17. Heffernan  R, Mostashari  F, Das  D, Karpati  A, Kulldorff  M, Weiss  D. Syndromic surveillance in public health practice, New York City. Emerg Infect Dis. 2004;10:85864.PubMedGoogle Scholar
  18. Elias  J, Harmsen  D, Claus  H, Hellenbrand  W, Frosch  M, Vogel  U. Spatiotemporal analysis of invasive meningococcal disease, Germany. Emerg Infect Dis. 2006;12:168995.PubMedGoogle Scholar
  19. Cleveland  RB, Cleveland  WS, McRae  JE, Terpenning  I. STL: a seasonal-trend decomposition procedure based on Loess. J Off Stat. 1990;6:373.
  20. International Research Institute for Climate and Society. IRI/LDEO Climate Data Library [cited 2010 Jan 12]
  21. Horion  S, Bergamino  N, Stenuite  S, Descy  JP, Plisnier  PD, Loiselle  SA, Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa. Remote Sens Environ. 2010;114:78191. DOIGoogle Scholar
  22. Bergamino  N, Horion  S, Stenuite  S, Cornet  Y, Loiselle  SA, Plisnier  PD, Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series. Remote Sens Environ. 2010;114:77280. DOIGoogle Scholar
  23. Climate change impact on the sustainable use of Lake Tanganyika fisheries (CLIMFISH) [cited 2010 Jan 12].
  24. Huot  Y, Babin  M, Bruyant  F, Grob  C, Twardowski  MS, Claustre  H. Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies? Biogeosciences Discuss. 2007;4:70745. DOIGoogle Scholar
  25. R Development Core Team. R: a language and environment for statistical computing. Version 2.13.1. Vienna: R Foundation for Statistical Computing; 2008 [cited 2010 Jan 12].
  26. Luque Fernández  MA, Bauernfeind  A, Díaz Jiménez  J, Linares Gil  C, El Omeiri  N, Herrera Guibert  D. Influence of temperature and rainfall on the evolution of cholera epidemics in Lusaka, Zambia, 2003–2006: analysis of a time series. Trans R Soc Trop Med Hyg. 2009;103:13743. DOIPubMedGoogle Scholar
  27. Birmingham  ME, Lee  L, Ndayimirije  N, Nkurikiye  S, Hersh  B, Wells  J, Epidemic cholera in Burundi: patterns of transmission in the Great Rift Valley Lake region. Lancet. 1997;349:9815. DOIPubMedGoogle Scholar
  28. Shapiro  RL, Otieno  M, Adcock  P, Phillips-Howard  P, Hawley  W, Kumar  L, Transmission of epidemic Vibrio cholerae O1 in rural western Kenya associated with drinking water from Lake Victoria: an environmental reservoir for cholera? Am J Trop Med Hyg. 1999;60:2716.PubMedGoogle Scholar
  29. Bompangue  D, Giraudoux  P, Handschumacher  P, Piarroux  M, Sudre  B, Ekwanzala  M, Lakes as source of cholera outbreaks, Democratic Republic of Congo. Emerg Infect Dis. 2008;14:798800. DOIPubMedGoogle Scholar
  30. Bompangue  D, Giraudoux  P, Piarroux  M, Mutombo  G, Shamavu  R, Sudre  B, Cholera epidemics, war and disasters around Goma and Lake Kivu: an eight-year survey. PLoS Negl Trop Dis. 2009;3:e436. DOIPubMedGoogle Scholar
  31. Hecky  RE, Bugenyi  FWB, Ochumba  P, Talling  JF, Mugidde  R, Gophen  M, Deoxygenation of the deep waters of Lake Victoria, East Africa. Limnol Oceanogr. 1994;39:147681. DOIGoogle Scholar
  32. Vollmer  MK, Bootsma  HA, Hecky  RE, Patterson  G, Halfman  JD, Edmond  JM, Deep-water warming trend in Lake Malawi, East Africa. Limnol Oceanogr. 2005;50:72732. DOIGoogle Scholar
  33. O'Reilly  CM, Alin  S, Plisnier  P, Cohen  A, McKee  B. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature. 2003;424:7668. DOIPubMedGoogle Scholar
  34. Cocquyt  C, Vyverman  W. Phytoplankton in Lake Tanganyika: a comparison of community composition and biomass off Kigoma with previous studies 27 years ago. J Great Lakes Res. 2005;31:53546. DOIGoogle Scholar

Main Article

Page created: October 19, 2011
Page updated: October 19, 2011
Page reviewed: October 19, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.