Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 12—December 2011
Research

Novel Multiplexed HIV/Simian Immunodeficiency Virus Antibody Detection Assay

Steve Ahuka-Mundeke, Ahidjo Ayouba, Placide Mbala-Kingebeni, Florian Liegeois, Amandine Esteban, Octavie Lunguya-Metila, Didace Demba, Guy Bilulu, Valentin Mbenzo-Abokome, Bila-Isia Inogwabini, Jean-Jacques Muyembe-Tamfum, Eric Delaporte, and Martine PeetersComments to Author 
Author affiliations: University of Montpellier, Montpellier, France (S. Ahuka-Mundeke, A. Ayouba, F. Liegeois, A. Esteban, E. Delaporte, M. Peeters); Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of Congo (S. Ahuka-Mundeke, P. Mbala-Kingebeni, O. Lunguya-Metila, J.-J. Muyembe-Tamfum); Cliniques Universitaires de Kinshasa, Kinshasa (S. Ahuka-Mundeke, P. Mbala-Kingebeni, O. Lunguya-Metila, J.-J. Muyembe-Tamfum); Zone de Santé de Kole, Sankuru, Kasai Oriental, Democratic Republic of Congo (D. Demba, G. Bilulu); World Wildlife Fund For Nature, Kinshasa (V. Mbenzo-Abokome, B-I. Inogwabini)

Main Article

Figure 2

Phylogenetic relationships of the newly derived simian immunodeficiency virus (SIV) sequences in pol to representatives of the other SIV lineages. Newly identified strains in this study are in red and reference strains are in black. Unrooted trees were inferred from 350-bp nucleotides. Analyses were performed by using discrete gamma distribution and a generalized time reversible model. The starting tree was obtained by using phyML (27). One hundred bootstrap replications were performed to assess

Figure 2. Phylogenetic relationships of the newly derived simian immunodeficiency virus (SIV) sequences in pol to representatives of the other SIV lineages. Newly identified strains in this study are in red and reference strains are in black. Unrooted trees were inferred from 350-bp nucleotides. Analyses were performed by using discrete gamma distribution and a generalized time reversible model. The starting tree was obtained by using phyML (27). One hundred bootstrap replications were performed to assess confidence in topology. Numbers at nodes are from 100 bootstrap replicates; only those >90% are shown with an asterisk. Scale bar represents nucleotide replacements per site.

Main Article

References
  1. Hahn  BH, Shaw  GM, De Cock  KM, Sharp  PM. AIDS as a zoonosis: scientific and public health implications. Science. 2000;287:60714. DOIPubMedGoogle Scholar
  2. Keele  BF, Van Heuverswyn  F, Li  Y, Bailes  E, Takehisa  J, Santiago  ML, Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science. 2006;313:5236. DOIPubMedGoogle Scholar
  3. Van Heuverswyn  F, Li  Y, Neel  C, Bailes  E, Keele  BF, Liu  W, Human immunodeficiency viruses: SIV infection in wild gorillas. Nature. 2006;444:164. DOIPubMedGoogle Scholar
  4. Gao  F, Yue  L, White  AT, Pappas  PG, Barchue  J, Hanson  AP, Human infection by genetically diverse SIVSM-related HIV-2 in west Africa. Nature. 1992;358:4959. DOIPubMedGoogle Scholar
  5. Hirsch  VM, Olmsted  RA, Murphey-Corb  M, Purcell  RH, Johnson  PR. An African primate lentivirus (SIVsm) closely related to HIV-2. Nature. 1989;339:38992. DOIPubMedGoogle Scholar
  6. Plantier  JC, Leoz  M, Dickerson  JE, De Oliveira  F, Cordonnier  F, Lemée  V, A new human immunodeficiency virus derived from gorillas. Nat Med. 2009;15:8712. DOIPubMedGoogle Scholar
  7. Wolfe  ND, Prosser  TA, Carr  JK, Tamoufe  U, Mpoudi-Ngole  E, Torimiro  JN, Exposure to nonhuman primates in rural Cameroon. Emerg Infect Dis. 2004;10:20949.PubMedGoogle Scholar
  8. Peeters  M, Courgnaud  V, Abela  B, Auzel  P, Pourrut  X, Bibollet-Ruche  F, Risk to human health from a plethora of simian immunodeficiency viruses in primate bushmeat. Emerg Infect Dis. 2002;8:4517.PubMedGoogle Scholar
  9. Calattini  S, Betsem  EB, Froment  A, Mauclère  P, Tortevoye  P, Schmitt  C, Simian foamy virus transmission from apes to humans, rural Cameroon. Emerg Infect Dis. 2007;13:131420.PubMedGoogle Scholar
  10. Wolfe  ND, Heneine  W, Carr  JK, Garcia  AD, Shanmugam  V, Tamoufe  U, Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc Natl Acad Sci U S A. 2005;102:79949. DOIPubMedGoogle Scholar
  11. Wolfe  ND, Switzer  WM, Carr  JK, Bhullar  VB, Shanmugam  V, Tamoufe  U, Naturally acquired simian retrovirus infections in central African hunters. Lancet. 2004;363:9327. DOIPubMedGoogle Scholar
  12. Zheng  H, Wolfe  ND, Sintasath  DM, Tamoufe  U, Lebreton  M, Djoko  CF, Emergence of a novel and highly divergent HTLV-3 in a primate hunter in Cameroon. Virology. 2010;401:13745. DOIPubMedGoogle Scholar
  13. Van Heuverswyn  F, Peeters  M. The origins of HIV and implications for the global epidemic. Curr Infect Dis Rep. 2007;9:33846. DOIPubMedGoogle Scholar
  14. Aghokeng  AF, Liu  W, Bibollet-Ruche  F, Loul  S, Mpoudi-Ngole  E, Laurent  C, Widely varying SIV prevalence rates in naturally infected primate species from Cameroon. Virology. 2006;345:17489. DOIPubMedGoogle Scholar
  15. Aghokeng  AF, Ayouba  A, Mpoudi-Ngole  E, Loul  S, Liegeois  F, Delaporte  E, Extensive survey on the prevalence and genetic diversity of SIVs in primate bushmeat provides insights into risks for potential new cross-species transmissions. Infect Genet Evol. 2010;10:38696. DOIPubMedGoogle Scholar
  16. Simon  F, Souquière  S, Damond  F, Kfutwah  A, Makuwa  M, Leroy  E, Synthetic peptide strategy for the detection of and discrimination among highly divergent primate lentiviruses. AIDS Res Hum Retroviruses. 2001;17:93752. DOIPubMedGoogle Scholar
  17. Ndongmo  CB, Switzer  WM, Pau  CP, Zeh  C, Schaefer  A, Pieniazek  D, New multiple antigenic peptide-based enzyme immunoassay for detection of simian immunodeficiency virus infection in nonhuman primates and humans. J Clin Microbiol. 2004;42:51619. DOIPubMedGoogle Scholar
  18. Bernhard  OK, Mathias  RA, Barnes  TW, Simpson  RJ. A fluorescent microsphere-based method for assay of multiple analytes in plasma. Methods Mol Biol. 2011;728:195206. DOIPubMedGoogle Scholar
  19. Crowther  JR. The ELISA guidebook. In: Walker JM, editor. Methods in molecular biology. Vol. 149. Totowa (NJ): Humana Press: Totowa, NJ; 2001.
  20. Monleau  M, Montavon  C, Laurent  C, Segondy  M, Montes  B, Delaporte  E, Evaluation of different RNA extraction methods and storage conditions of dried plasma or blood spots for human immunodeficiency virus type 1 RNA quantification and PCR amplification for drug resistance testing. J Clin Microbiol. 2009;47:110718. DOIPubMedGoogle Scholar
  21. Van Der Kuyl  AC, Van Gennep  DR, Dekker  JT, Goudsmit  J. Routine DNA analysis based on 12S rRNA gene sequencing as a tool in the management of captive primates. J Med Primatol. 2000;29:30715. DOIPubMedGoogle Scholar
  22. Clewley  JP, Lewis  JC, Brown  DW, Gadsby  EL. A novel simian immunodeficiency virus (SIVdrl) pol sequence from the drill monkey, Mandrillus leucophaeus. J Virol. 1998;72:103059.PubMedGoogle Scholar
  23. Aghokeng  AF, Bailes  E, Loul  S, Courgnaud  V, Mpoudi-Ngole  E, Sharp  PM, Full-length sequence analysis of SIVmus in wild populations of mustached monkeys (Cercopithecus cephus) from Cameroon provides evidence for two co-circulating SIVmus lineages. Virology. 2007;360:40718. DOIPubMedGoogle Scholar
  24. Liégeois  F, Lafay  B, Formenty  P, Locatelli  S, Courgnaud  V, Delaporte  E, Full-length genome characterization of a novel simian immunodeficiency virus lineage (SIVolc) from olive Colobus (Procolobus verus) and new SIVwrcPbb strains from Western Red Colobus (Piliocolobus badius badius) from the Tai Forest in Ivory Coast. J Virol. 2009;83:42839. DOIPubMedGoogle Scholar
  25. Larkin  MA, Blackshields  G, Brown  NP, Chenna  R, McGettigan  PA, McWilliam  H, Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:29478. DOIPubMedGoogle Scholar
  26. Milne  I, Lindner  D, Bayer  M, Husmeier  D, McGuire  G, Marshall  DF, TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics. 2009;25:1267. DOIPubMedGoogle Scholar
  27. Guindon  S, Gascuel  O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696704. DOIPubMedGoogle Scholar
  28. Groves  C. Primate taxonomy. Smithsonian Series in Comparative Evolutionary Biology. Washington: Smithsonian Institution Press; 2001.
  29. Goldberg  TL, Sintasath  DM, Chapman  CA, Cameron  KM, Karesh  WB, Tang  S, Coinfection of Ugandan red colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) with novel, divergent delta-, lenti-, and spumaretroviruses. J Virol. 2009;83:1131829. DOIPubMedGoogle Scholar
  30. Verschoor  EJ, Fagrouch  Z, Bontjer  I, Niphuis  H, Heeney  JL. A novel simian immunodeficiency virus isolated from a Schmidt’s guenon (Cercopithecus ascanius schmidti). J Gen Virol. 2004;85:214. DOIPubMedGoogle Scholar
  31. Takemura  T, Ekwalanga  M, Bikandou  B, Ido  E, Yamaguchi-Kabata  Y, Ohkura  S, A novel simian immunodeficiency virus from black mangabey (Lophocebus aterrimus) in the Democratic Republic of Congo. J Gen Virol. 2005;86:196771. DOIPubMedGoogle Scholar
  32. Aghokeng  AF, Ayouba  A, Ahuka  S, Liegois  F, Mbala  P, Muyembe  JJ, Genetic diversity of simian lentivirus in wild De Brazza’s monkeys (Cercopithecus neglectus) in equatorial Africa. J Gen Virol. 2010;91:18106. DOIPubMedGoogle Scholar
  33. Parrish  CR, Holmes  EC, Morens  DM, Park  EC, Burke  DS, Calisher  CH, Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev. 2008;72:45770. DOIPubMedGoogle Scholar
  34. Santiago  ML, Range  F, Keele  BF, Li  Y, Bailes  E, Bibollet-Ruche  F, Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Tai Forest, Côte d'Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2. J Virol. 2005;79:1251527. DOIPubMedGoogle Scholar
  35. Switzer  W, Ahuka-Mundeke  S, Tang  S, Shankar  A, Wolfe  N, Heneine  W, SFV infection from Colobus monkeys in women from Democratic Republic of Congo. 18th Conference on Retroviruses and Opportunistic Infections, Boston, Feb 27−March 2, 2011. Paper no. 454.
  36. US Agency for International Development HIV/AIDS. Democratic Republic of Congo [cited 2011 Sep 28].) http://www.usaid.gov/our_work/global_health/aids/Countries/africa/congo.html
  37. Vidal  N, Peeters  M, Mulanga-Kabeya  C, Nzilambi  N, Robertson  D, Ilunga  W, Unprecedented degree of human immunodeficiency virus type 1 (HIV-1) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa. J Virol. 2000;74:10498507. DOIPubMedGoogle Scholar
  38. Braeckman  C. Les nouveaux predateurs. Politique des puissances en Afrique centrale. Paris: Fayard; 2003.
  39. Laurent  C, Bourgeois  A, Mpoudi  M, Butel  C, Peeters  M, Mpoudi-Ngolé  E, Commercial logging and HIV epidemic, rural Equatorial Africa. Emerg Infect Dis. 2004;10:19536.PubMedGoogle Scholar
  40. Mulanga  C, Bazepeo  SE, Mwamba  JK, Butel  C, Tshimpaka  JW, Kashi  M, Political and socioeconomic instability: how does it affect HIV? A case study in the Democratic Republic of Congo. AIDS. 2004;18:8324. DOIPubMedGoogle Scholar

Main Article

Page created: November 30, 2011
Page updated: November 30, 2011
Page reviewed: November 30, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external