Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 2—February 2011
Research

Next-Generation Sequencing of Coccidioides immitis Isolated during Cluster Investigation

David M. Engelthaler, Tom M. Chiller, James A. Schupp, Joshua Colvin, Stephen M. Beckstrom-Sternberg, Elizabeth M. Driebe, Tracy Moses, Waibhav Tembe, Shripad Sinari, James S. Beckstrom-Sternberg, Alexis Christoforides, John V. Pearson, John Carpten, Paul Keim, Ashley Peterson, Dawn Terashita, and S. Arunmozhi BalajeeComments to Author 
Author affiliations: Author affiliations: Translational Genomics Research Institute, Phoenix, Arizona, USA (D.M. Engelthaler, J.A. Schupp, J. Colvin, S.M. Beckstrom-Sternberg, E.M. Driebe, T. Moses, W. Tembe, S. Sinari, A. Christoforides, J.V. Pearson, J. Carpten, P. Keim); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (T. Chiller, S.A. Balajee); Northern Arizona University, Flagstaff, Arizona, USA (S.M. Beckstrom-Sternberg, J.S. Beckstrom-Sternberg, P. Keim); Los Angeles County Department of Public Health, Los Angeles, California, USA (A. Peterson, D. Terashita)

Main Article

Figure 3

Maximum-parsimony phylogenetic analysis of 13 Coccidioides immitis genomes. MEGA4 (13) was used to conduct maximum-parsimony analysis of all single-nucleotide polymorphism (SNP) loci common to the 3 transplant isolate genomes and the 10 publicly available C. immitis genome sequences (6,10). A total of 32,695 SNP positions were identified in the final dataset, of which 17,080 were parsimony informative. The percentages of replicate trees in which the associated taxa clustered in the bootstrap tes

Figure 3. Maximum-parsimony phylogenetic analysis of 13 Coccidioides immitis genomes. MEGA4 (13) was used to conduct maximum-parsimony analysis of all single-nucleotide polymorphism (SNP) loci common to the 3 transplant isolate genomes and the 10 publicly available C. immitis genome sequences (6,10). A total of 32,695 SNP positions were identified in the final dataset, of which 17,080 were parsimony informative. The percentages of replicate trees in which the associated taxa clustered in the bootstrap test (1,000 replicates) are shown next to the branches. The tree is drawn to scale; branch lengths were calculated by using the average pathway method (14) and are in the units of the number of changes over the whole sequence. The consistency index of the tree is 0.63. Scale bar indicates nucleotide substitutions per site.

Main Article

References
  1. Chaisson  MJ, Pevzner  PA. Short read fragment assembly of bacterial genomes. Genome Res. 2008;18:32430. DOIPubMedGoogle Scholar
  2. Cummings  CA, Bormann Chung  CA, Fang  R, Barker  M, Brzoska  PM, Williamson  P, Whole-genome typing of Bacillus anthracis isolates by next-generation sequencing accurately and rapidly identifies strain-specific diagnostic polymorphisms. Forensic Sci Int Genet. 2009;2:3001. DOIGoogle Scholar
  3. Harris  SR, Feil  EJ, Holden  MT, Quail  MA, Nickerson  EK, Chantratita  N, Evolution of MRSA during hospital transmission and intercontinental spread. Science. 2010;327:46974. DOIPubMedGoogle Scholar
  4. Galgiani  JN, Ampel  NM, Blair Je, Catanzaro A. Johnson RH, Stevens DA, et al. Coccidioidomycosis. Clin Infect Dis. 2005;41:121723. DOIPubMedGoogle Scholar
  5. Blair  JE. Coccidioidomycosis in patients who have undergone transplantation. Ann N Y Acad Sci. 2007;1111:36576. DOIPubMedGoogle Scholar
  6. The Broad Institute Coccidioides Group [updated 2010 Mar 31] [cited 2010 Apr 1]. http://www.broadinstitute.org/annotation/genome/coccidioides_group/GenomeDescriptions.html#iCoccidioidesimmitisiRS
  7. Homer  N, Merriman  B, Nelson  SF. BFAST: an alignment tool for large scale genome resequencing. PLoS ONE. 2009;4:e7767. DOIPubMedGoogle Scholar
  8. Sharpton  TJ, Stajich  JE, Rounsley  SD, Gardner  MJ, Wortman  JR, Jordar  VS, Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009;19:172231. DOIPubMedGoogle Scholar
  9. Colvin  SNP. Caller–TGen [updated 2010 Mar 31] [cited 2010 Apr 1]. http://public.tgen.org/merge-pileup
  10. Short Read Archive–NCBI [updated 2008 Nov 5] [cited 2010 Feb 15]. http://www.ncbi.nlm.nih.gov/sra/SRX022538?report=full
  11. Li  H, Handsaker  B, Wysoker  A, Fennell  T, Ruan  J, Homer  N, 1000 Genome Project Data Processing Subgroup. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25:20789. DOIPubMedGoogle Scholar
  12. Kurtz  S, Phillippy  A, Delcher  A, Smoot  M, Shumway  M, Antonescu  C, Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. DOIPubMedGoogle Scholar
  13. Tamura  K, Dudley  J, Nei  M, Kumar  S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:15969. DOIPubMedGoogle Scholar
  14. Nei  M, Kumar  S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000. p. 132.
  15. Keckich  DW, Blair  JE, Vikram  HR. Coccidioides fungemia in six patients, with a review of the literature. Mycopathologia. 2010;170:10715. Epub 2010 Mar 25. DOIPubMedGoogle Scholar
  16. Taylor  JW, Geiser  DM, Burt  A, Koufopanou  V. The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev. 1999;12:12646.PubMedGoogle Scholar
  17. Fisher  MC, Koenig  GL, White  TJ, San-Blas  G, Negroni  R, Alvarez  IG, Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proc Natl Acad Sci U S A. 2001;98:455862. DOIPubMedGoogle Scholar
  18. Jewell  K, Cheshire  R, Cage  GD. Genetic diversity among clinical Coccidioides spp. isolates in Arizona. Med Mycol. 2008;46:44955. DOIPubMedGoogle Scholar
  19. Keim  P, Van Ert  M, Pearson  T, Vogler  A, Hyunh  L, Wagner  D. Anthrax molecular epidemiology and forensics: using different markers for the appropriate evolutionary scales. Infect Genet Evol. 2004;4:20513. DOIPubMedGoogle Scholar
  20. Pearson  T, Okinaka  RT, Foster  JT, Keim  P. Phylogenetic understanding of clonal populations in an era of whole genome sequencing. Infect Genet Evol. 2009;9:10109. DOIPubMedGoogle Scholar
  21. Pearson  T, Giffard  P, Beckstrom-Sternberg  S, Auerbach  R, Hornstra  H, Tuanyok  A, Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer BMC Biol. 2009; 18;7:78. PMID: 19922616
  22. Burt  A, Carter  DA, Koenig  GL, White  TJ, Taylor  JW. Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc Natl Acad Sci U S A. 1996;93:7703. DOIPubMedGoogle Scholar
  23. Greub  G, Kebbi-Beghdadi  C, Bertelli  C, Collyn  F, Riederer  BM, Yersin  C, High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach. PLoS ONE. 2009;4:e8423. DOIPubMedGoogle Scholar
  24. Schielke  A, Sachs  K, Lierz  M, Appel  B, Jansen  A, Johne  R. Detection of hepatitis E virus in wild boars of rural and urban regions in Germany and whole genome characterization of an endemic strain. Virol J. 2009;14;6:58. PMID: 19442307
  25. Sanabani  SS, Pastena  ER, Kleine Neto  W, Barreto  CC, Ferrari  KT, Kalmar  EM, Near full-length genome analysis of low prevalent human immunodeficiency virus type 1 subclade F1 in São Paulo, Brazil. Virol J. 2009;16;6:78. PMID: 19531216
  26. Liu  J, Xiao  H, Lei  F, Zhu  Q, Qin  K, Zhang  XW, Highly pathogenic H5N1 influenza virus infection in migratory birds. Science. 2005;309:1206. DOIPubMedGoogle Scholar
  27. Craig  DW, Pearson  JV, Szelinger  S, Sekar  A, Redman  M, Corneveaux  JJ, Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods. 2008;5:88793. DOIPubMedGoogle Scholar
  28. Langmead  B, Trapnell  C, Pop  M, Salzberg  SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. DOIPubMedGoogle Scholar
  29. Schatz  MC. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics. 2009;25:13639. DOIPubMedGoogle Scholar
  30. Langmead  B, Schatz  MC, Lin  J, Pop  M, Salzberg  SL. Searching for SNPs with cloud computing. Genome Biol. 2009;10:R134. DOIPubMedGoogle Scholar

Main Article

Page created: July 08, 2011
Page updated: July 08, 2011
Page reviewed: July 08, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external