Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 2—February 2011
Letter

Introduction of Japanese Encephalitis Virus Genotype I, India

On This Page
Figures
Article Metrics
75
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: Seasonal outbreaks of fatal acute encephalitis syndrome (AES) occur regularly in several parts of India. Japanese encephalitis virus (JEV) has been the major and consistent cause of these outbreaks in the Gorakhpur region of Uttar Pradesh State, accounting for ≈10%–15% of total AES cases annually (13). In India, vaccinations against Japanese encephalitis (JE) are administered in areas where the disease is hyperendemic, including Gorakhpur, and AES cases are regularly investigated to clarify the effects of vaccination. Currently, >2,000 patients with AES are admitted each year to Baba Raghav Das Medical College, Gorakhpur.

JEV is classified into 5 genotypes. Genotype III (GIII) is widely distributed in Asian countries, including Japan, South Korea, the People’s Republic of China, Taiwan, Vietnam, the Philippines, India, Nepal, and Sri Lanka (4). However, during the past decade, JEV GI has been introduced into South Korea, Thailand, and China and has replaced the GIII strains that had been circulating in Japan and Vietnam during the mid-1990s (5). Until 2007, all known JEV strains isolated in India belonged to GIII (24,6).

The JE-endemic Gorakhpur region recorded a sudden increase in AES cases during September–November 2009. Clinical specimens collected from 694 hospitalized patients were examined for JEV infection by JEV-specific immunoglobulin M capture ELISA (7). Clinical specimens comprising 115 (16.6%) cerebrospinal fluid (CSF) specimens and 114 (16.4%) serum specimens showed recent JE infection among 158 (22.7%) of the case-patients.

All CSF specimens were processed for JEV genome detection by diagnostic reverse transcription–PCR (RT-PCR), which amplified the nucleocapsid-premembrane genes (7). Additionally, envelope (E) gene–specific primers designed from Indian JEV isolate GP78 (GenBank accession no. AF075723) were used for E gene amplification.

The diagnostic RT-PCR detected JEV in 66 (9.5%) of 694 CSF specimens (GenBank accession nos. HM156543–HM156569, HM156573–HM156611). Among them, 27 sequences differed from the remaining 39, with only 86.2%–88.7% nt identity. The group of 27 sequences showed 99.2%–100% nt identity with each other and a high of 95.0% nt identity with Japanese GI swine JEV isolate (AB241119). The 39 sequences showed 94.2%–100.0% nt identity with each other and with other Indian GIII JEV strains. These findings indicate that both GI and GIII JEV strains circulate in the Gorakhpur region.

Figure

Thumbnail of Phylogenetic tree constructed by using a 1,381-nt Japanese encephalitis virus (JEV) envelope sequence directly amplified from cerebrospinal fluid specimens collected during the acute phase of illness from hospitalized acute encephalitis syndrome patients, India, September–November 2009. Multiple sequence alignment and phylogenetic analysis were conducted by using ClustalW software (www.ebi.ac.uk/Tools/clustalw2/index.html) and MEGA version 4 (www.megasoftware.net). The phylogenetic

Figure. Phylogenetic tree constructed by using a 1,381-nt Japanese encephalitis virus (JEV) envelope sequence directly amplified from cerebrospinal fluid specimens collected during the acute phase of illness from hospitalized acute encephalitis syndrome...

The E gene sequence was amplified from 4/66 JEV-positive CSF samples (GenBank accession nos. HM156570–HM156572, HM156612). A comparison of E gene nucleotide sequences those of other JEV isolates from the region showed that 1 E gene sequence belonged to GIII and the other 3 to GI (Figure). The 3 GI E gene sequences were most similar (98.6%) with Japanese isolate 95–167/1995/swine (AY377579), followed by 98.5% similarity with Korean isolate K96A07/1996 (FJ938219). The single GIII E gene sequence showed 95.6%–99.8% nt identity with other Indian GIII isolates with the highest similarity (99.8% nt identity) with the 014178 (EF623987) JEV isolate from the 2001 Uttar Pradesh outbreak. Analysis of the E gene sequence amplified from 2 JEV isolates, obtained by injecting 29 CSF samples, positive by RT-PCR, into baby hamster kidney cells, showed 100.0% nt identity with sequences directly amplified from respective CSF specimens (3). Phylogenetic analysis of these E gene sequences, along with other 55 GenBank sequences, confirmed that 3 sequences belonged to JEV GI, and 1 belonged to GIII (Figure).

The first JE outbreak in the Gorakhpur region was documented during 1978. Since then, JE epidemics have occurred regularly (8). This study demonstrated simultaneous detection and isolation of GI and GIII JEV strains from AES case-patients. Documented clinical symptoms among patients infected with the 2 strains were indistinguishable.

GI JEV isolates from India share close genetic relationship with GI strains from Japan and Korea. In India, JEV neutralizing antibodies have been detected in 179 (34.8%) of 514 birds, including pond herons and cattle egrets, indicating a possible role in virus maintenance (9). Large perennial lakes, swamps, and rice fields provide a wintering and staging ground for several migratory waterfowl; such areas also favor breeding and survival of mosquitoes (10). Considering these conditions, GI JEV may have been introduced into India through migratory birds, as it has in other Asian countries (5). However, the exact mode of introduction of GI JEV into India is not known, and further studies are needed to determine the role of migratory birds in JE transmission.

This study suggests the recent introduction of JEV GI strain in India. Simultaneous detection of GI and GIII strains indicates their co-circulation and association with human infections in Gorakhpur region. Because the live attenuated JE vaccine used in India is derived from GIII strain SA14–14–2, the efficacy of the vaccine to protect against GI JEV must be carefully evaluated. Thus, the genetic and antigenic variation among JEV strains circulating in India should be monitored to determine effects on JE epidemiology and ongoing vaccination efforts. Additionally, the expansion of GI JEV into other parts of India should be continuously tracked.

Top

Acknowledgments

We thank the Directorate of Health Services, Government of Uttar Pradesh, India, for support. We also are grateful to K. P. Kushwaha and A. K. Thacker for their efforts in clinical diagnosis and to V. Shankararaman, V. M. Ayachit, V. Sonawane, S. Mahamuni, V. Phokmare, and staff members from the National Institute of Virology Unit, Gorakhapur, for technical support.

This study was supported by the Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India.

Top

Pradip V. Fulmali, Gajanan N. Sapkal, Sulabha Athawale, Milind M. Gore, Akhilesh C. Mishra, and Vijay P. BondreComments to Author 
Author affiliations: Author affiliations: National Institute of Virology, Pune, India (P. V. Fulmali, G.N. Sapkal, S. Athawale, A.C. Mishra, V.P. Bondre); National Institute of Virology, Gorakhpur, India (M.M. Gore)

Top

References

  1. Saxena  V, Dhole  TN. Preventive strategies for frequent outbreaks of Japanese encephalitis in northern India. J Biosci. 2008;33:50514. DOIPubMedGoogle Scholar
  2. Saxena  SK, Mishra  N, Saxena  R, Singh  M, Mathur  A. Trend of Japanese encephalitis in north India: evidence from thirty-eight acute encephalitis cases and appraisal of niceties. [PMID: 19762970]. J Infect Dev Ctries. 2009;30:51730.PubMedGoogle Scholar
  3. Sapkal  GN, Bondre  VP, Fulmali  PV, Patil  P, Gopalkrishna  V, Dadhania  V, Enteroviruses in patients with acute encephalitis, Uttar Pradesh, India. Emerg Infect Dis. 2009;15:2958. DOIPubMedGoogle Scholar
  4. Mackenzie  JS, Gubler  DJ, Petersen  LR. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med. 2004;10(Suppl):S98109. DOIPubMedGoogle Scholar
  5. Huang  JH, Lin  TH, Teng  HJ, Su  CL, Tsai  KH, Lu  LC, Molecular epidemiology of Japanese encephalitis virus, Taiwan. Emerg Infect Dis. 2010;16:8768.PubMedGoogle Scholar
  6. Uchil  PD, Satchidanandam  V. Phylogenetic analysis of Japanese encephalitis virus: envelope gene based analysis reveals a fifth genotype, geographic clustering, and multiple introductions of the virus into the Indian subcontinent. Am J Trop Med Hyg. 2001;65:24251.PubMedGoogle Scholar
  7. Sapkal  GN, Wairagkar  NS, Ayachit  VM, Bondre  VP, Gore  MM. Detection and isolation of Japanese encephalitis virus from blood clots collected during the acute phase of infection. Am J Trop Med Hyg. 2007;77:113945.PubMedGoogle Scholar
  8. Mathur  A, Chaturvedi  UC, Tandon  HO, Agrawal  AK, Mathur  GP, Japanese encephalitis epidemic in Uttar Pradesh, India during 1978. Indian J Med Res. 1982;75:1619.PubMedGoogle Scholar
  9. Rodrigues  FM, Guttikar  SN, Pinto  BD. Prevalence of antibodies to Japanese encephalitis and West Nile viruses among wild birds in the Krishna-Godavari Delta, Andhra Pradesh, India. Trans R Soc Trop Med Hyg. 1981;75:25862. DOIPubMedGoogle Scholar
  10. Tripathy  SC. Can Bakhira bird sanctuary safeguard the purple moorhens? Curr Sci. 2004;86:3678.

Top

Figure

Top

Cite This Article

DOI: 10.3201/eid1702.100815

Related Links

Top

Table of Contents – Volume 17, Number 2—February 2011

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Vijay P. Bondre, Encephalitis Group, National Institute of Virology, Sus Rd, Pashan, Pune, India:

Send To

10000 character(s) remaining.

Top

Page created: July 13, 2011
Page updated: July 13, 2011
Page reviewed: July 13, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external