Volume 17, Number 5—May 2011
Dispatch
Tick-Borne Encephalitis Virus, Kyrgyzstan
Table 2
Primer | Gene | Sequence, 5′ → 3′ | Reference |
---|---|---|---|
FSM-1 | NS5 | GAGGCTGAACAACTGCACGA | (8) |
FSM-2 | NS5 | GAACACGTCCATTCCTGATCT | (8) |
FSM-1i | NS5 | ACGGAACGTGACAAGGCTAG | (8) |
FSM-2i | NS5 | GCTTGTTACCATCTTTGGAG | (8) |
TBEV913F | E | TGCACACAYYTGGAAAACAGGGA | (9) |
TBEV1738R | E | TGGCCACTTTTCAGGTGGTACTTGGTTCC | (9) |
RH TBE forward | E | GGCAGCATTGTGACCTGTGT | R. Hewson, unpub. data |
RH TBE reverse | E | CGTGTCCTGTGGCTTTCTTTTT | R. Hewson, unpub. data |
RH TBE probe | E | 6FAM-AGGYGKCYTGTGAGGC-MGB NFQ | R. Hewson, unpub. data |
*TBEV, tick-borne encephalitis virus; NS, nonstructural protein; E, envelope.
References
- Lindenbach BD, Thiel H-J, Rice CM. Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM, editors. Fields’ virology. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007. p. 1101–52.
- Randolph SE. Tick-borne encephalitis virus, ticks and humans: short-term and long-term dynamics. Curr Opin Infect Dis. 2008;21:462–7. DOIPubMedGoogle Scholar
- Lindquist L, Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–71. DOIPubMedGoogle Scholar
- Holzmann H, Aberle SW, Stiasny K, Werner P, Mischak A, Zainer B, Tick-borne encephalitis from eating goat cheese in a mountain region of Austria. Emerg Infect Dis. 2009;15:1671–3.PubMedGoogle Scholar
- Kyrgyzstan CIA. The world factbook; 2009 [cited 2009 Dec 27]. https://www.cia.gov/library/publications/the-world-factbook/geos/kg.html
- Holbrook MR, Shope RE, Barrett AD. Use of recombinant E protein domain III-based enzyme-linked immunosorbent assays for differentiation of tick-borne encephalitis serocomplex flaviviruses from mosquito-borne flaviviruses. J Clin Microbiol. 2004;42:4101–10. DOIPubMedGoogle Scholar
- Niedrig M, Vaisviliene D, Teichmann A, Klockmann U, Biel SS. Comparison of six different commercial IgG-ELISA kits for the detection of TBEV-antibodies. J Clin Virol. 2001;20:179–82. DOIPubMedGoogle Scholar
- Puchhammer-Stöckl E, Kunz C, Mandl CW, Heinz FX. Identification of tick-borne encephalitis virus ribonucleic acid in tick suspensions and in clinical specimens by a reverse transcription–nested polymerase chain reaction assay. Clin Diagn Virol. 1995;4:321–6. DOIPubMedGoogle Scholar
- Ternovoi VA, Kurzhukov GP, Sokolov YV, Ivanov GY, Ivanisenko VA, Loktev AV, Tick-borne encephalitis with hemorrhagic syndrome, Novosibirsk region, Russia, 1999. Emerg Infect Dis. 2003;9:743–6.PubMedGoogle Scholar
- Ecker M, Allison SL, Meixner T, Heinz FX. Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J Gen Virol. 1999;80:179–85.PubMedGoogle Scholar
- Bakhvalova VN, Potapova OF, Panov VV, Morozova OV. Vertical transmission of tick-borne encephalitis virus between generations of adapted reservoir small rodents. Virus Res. 2009;140:172–8. DOIPubMedGoogle Scholar
- Labuda M, Nuttall PA, Kozuch O, Eleckova E, Williams T, Zuffova E, Non-viraemic transmission of tick-borne encephalitis virus: a mechanism for arbovirus survival in nature. Experientia. 1993;49:802–5. DOIPubMedGoogle Scholar
- Randolph SE, Green RM, Peacey MF, Rogers DJ. Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology. 2000;121:15–23. DOIPubMedGoogle Scholar
- Phillips CJ. Harrington AM., Yates TL, Simpson GL, Baker RJ. Global disease surveillance, emergent disease preparedness, and national security. Lubbock (TX): Museum of Texas Tech University; 2009.
Page created: August 08, 2011
Page updated: August 08, 2011
Page reviewed: August 08, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.