Volume 18, Number 1—January 2012
Dispatch
Spoligotyping of Mycobacterium africanum, Burkina Faso
Table
Clade† | No. (%) isolates, n = 72‡ |
---|---|
CAM | 18 (25) |
Including CAM_family prototype = SIT61 | 14 (19) |
Other CAM | 4 (6) |
T | 16 (22.2) |
Including T1 | 10 (13.9) |
Undefined T1-T2 | 2 (2.8) |
T2 | 1 (1.4) |
T3 | 1 (1.4) |
T5_MAD2 | 2 (2.8) |
Haarlem | 10 (13.9) |
Including H1 | 7 (9.7) |
H3 | 3 (4.2) |
X | 4 (5.6) |
Including X3 | 1 (1.4) |
M. africanum I (WA I and WA 2) | 16 (22.2) |
M. bovis | 1 (1.4) |
CAS1_Delhi | 5 (6.9) |
LAM9 | 1 (1.4) |
Beijing | 1 (1.4) |
*CAM, Cameroon; SIT, spoligo-international type; WA, West African; CAS, Central Asian; LAM, Latino American–Mediterranean.
†Described in (9).
‡Excludes 4 new and 4 unclassified genotypes.
References
- de Jong BC, Antonio M, Gagneux S. Mycobacterium africanum–review of an important cause of human tuberculosis in west Africa. PLoS Negl Trop Dis. 2010;4:e744. DOIPubMedGoogle Scholar
- Godreuil S, Torrea G, Terru D, Chevenet F, Diagbouga S, Supply P, First molecular epidemiology study of Mycobacterium tuberculosis in Burkina Faso. J Clin Microbiol. 2007;45:921–7. DOIPubMedGoogle Scholar
- Viana-Niero C, Gutierrez C, Sola C, Filliol I, Boulahbal F, Vincent V, Genetic diversity of Mycobacterium africanum clinical isolates based on IS6110-restriction fragment length polymorphism analysis, spoligotyping, and variable number of tandem DNA repeats. J Clin Microbiol. 2001;39:57–65. DOIPubMedGoogle Scholar
- Intemann CD, Thye T, Niemann S, Browne EN, Amanua Chinbuah M, Enimil A, Autophagy gene variant IRGM −261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog. 2009;5:e1000577. Epub 2009 Sep 11. DOIPubMedGoogle Scholar
- Ledru S, Cauchoix B, Yameogo M, Zoubga A, Lamande-Chiron J, Portaels F, Impact of short-course therapy on tuberculosis drug resistance in south-west Burkina Faso. Tuber Lung Dis. 1996;77:429–36. DOIPubMedGoogle Scholar
- Zhang J, Abadia E, Refregier G, Tafaj S, Boschiroli ML, Guillard B, Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of “spoligotyping” with new spacers and a microbead-based hybridization assay. J Med Microbiol. 2010;59:285–94. DOIPubMedGoogle Scholar
- Kamble RR, Shinde VS, Madhale SP, Kamble AA, Ravikumar BP, Jadhav RS. Extraction and detection of Mycobacterium leprae DNA from ZNCF-stained skin smear slides for better identification of negative skin smears. Indian J Med Microbiol. 2010;28:57–9. DOIPubMedGoogle Scholar
- van der Zanden AG, Hoentjen AH, Heilmann FG, Weltevreden EF, Schouls LM, van Embden JD. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis complex in paraffin wax embedded tissues and in stained microscopic preparations. Mol Pathol. 1998;51:209–14. DOIPubMedGoogle Scholar
- Brudey K, Driscoll J, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SAM, Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, Population Genetics, and Epidemiology. BMC Microbiol. 2006;6:23. DOIPubMedGoogle Scholar
- Frothingham R, Strickland PL, Bretzel G, Ramaswamy S, Musser JM, Williams DL. Phenotypic and genotypic characterization of Mycobacterium africanum isolates from west Africa. J Clin Microbiol. 1999;37:1921–6.PubMedGoogle Scholar
- Vasconcellos SE, Huard RC, Niemann S, Kremer K, Santos AR, Suffys PN, Distinct genotypic profiles of the two major clades of Mycobacterium africanum. BMC Infect Dis. 2010;10:80. DOIPubMedGoogle Scholar
- Huet M, Rist N, Boube G, Potier D. Etude bactériologique de la tuberculose au Cameroon. Rev Tuberc Pneumol (Paris). 1971;35:413–26.PubMedGoogle Scholar
- Niobe-Eyangoh SN, Kuaban C, Sorlin P, Cunin P, Thonnon J, Sola C, Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol. 2003;41:2547–53. DOIPubMedGoogle Scholar
- Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol. 2005;56:163–74. DOIPubMedGoogle Scholar
Page created: December 20, 2011
Page updated: December 20, 2011
Page reviewed: December 20, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.