Volume 18, Number 8—August 2012
Research
VIM-2–producing Multidrug-Resistant Pseudomonas aeruginosa ST175 Clone, Spain
Table A1
Isolate | No. isolates/y |
Carbapenemase type (no. isolates) | ST | No. (%) resistant isolates |
|||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2007 | 2008 | 2009 | 2010 | PIP/TZ | CAZ | FEP | IMP | MER | ATM | GEN | TOB | AMK | CIP | ||||
All MDR isolates (183) | 13 | 32 | 38 | 100 | VIM-1, VIM-2, IMP-22, GES1–5 (146) | NA | 92 (50.3)/ 180 (98.4) | 183 (100) | 183 (100) | 183 (100) | 183 (100) | 75 (41.0)/ 179 (97.8)† | 178 (97.3) | 177 (96.7) | 77 (42.1) | 172 (94) | |
P. aeruginosa (clonal types) | |||||||||||||||||
B (104) | 0 | 5 | 23 | 76 | VIM-2 (103), IMP-22 (1) | 175, 175 | 21 (20.2)/ 101 (97.1)† | 104 (100) | 104 (100) | 104 (100) | 104 (100) | 14 (13.5)/ 100 (95.2)† | 104 (100) | 104 (100) | 26 (25) | 104 (100) | |
A (29)‡ | 8 | 16 | 4 | 1 | GES 1/5 (29) | 235 | 29 (100) | 29 (100) | 29 (100) | 29 (100) | 29 (100) | 25 (86.2) | 29 (100) | 26 (89.6) | 25 (86.2) | 28 (96.5) | |
C (2) | 0 | 0 | 1 | 1 | VIM-2 (2) | NA | 2 (100) | 2 (100) | 2 (100) | 2 (100) | 2 (100) | 2 (100) | 2 (100) | 2 (100) | 2 (100) | 2 (100) | |
D (2) | 0 | 0 | 0 | 2 | Noncarbapenemase (2) | NA | 2 (100) | 2 (100) | 2 (100) | 2 (100) | 2 (100) | 0 | 2 (100) | 2 (100) | 2 (100) | 2 (100) | |
Unique clones (40) | 4 | 10 | 8 | 18 | Noncarbapenemase (35) | NA | 31 (88.6)/ 35 (100)† | 35 (100) | 35 (100) | 35 (100) | 35 (100) | 26 (74.3) | 30 (85.7) | 32 (65.7) | 17 (48.3) | 25 (71.4) | |
0 | 1 | 0 | 0 | PA_5 VIM-2 | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 1 | 0 | PA_10 VIM-2 | NA | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
0 | 0 | 1 | 0 | PA_12 VIM-1 | NA | 4 (80)/ 5 (100)† | 5 (100) | 5 (100) | 5 (100) | 5 (100) | 4 (80) | 5 (100) | 5 (100) | 3 (60) | 5 (100) | ||
0 | 0 | 1 | 0 | PA_13 VIM-2 | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 1 | PA_28 VIM-2 | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
P. putida (clonal types) | |||||||||||||||||
Unique clones (6) | 1 | 1 | 2 | 2 | 0 | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
1 | 0 | 0 | 0 | PP_1 VIM-2 | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 1 | 0 | 0 | PP_11 VIM-2 | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 1 | 0 | PP_14 VIM-2 | NA | 3 (50)/ 6 (100)† | 6 (100) | 6 (100) | 6 (100) | 6 (100) | 4 (66.6) | 6 (100) | 6 (100) | 2 (33.3) | 6 (100) | ||
0 | 0 | 1 | 0 | PP_19 VIM-2 | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 1 | 0 | PP25_VIM-1/VIM-2 | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 1 | 0 | PP_27 VIM-2 | NA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
*MDR, multidrug resistant; ST, sequence type; PIP/TZ, piperacillin-tazobactam; CAZ, ceftazidime; FEP, cefepime; IMP, imipenem; MER, meropenem; ATM, aztreonam; GEN, gentamicin; TOB, tobramycin; AMK, amikacin; CIP, ciprofloxacin; NA, not available. None of the isolates showed resistance to colistin.
†Percentage drug-resistant isolates when the European Committee on Susceptibility Testing break point was applied.
‡Viedma et al. (16).
References
- Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006;50:43–8. DOIPubMedGoogle Scholar
- Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002;34:634–40. DOIPubMedGoogle Scholar
- Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20:440–58. DOIPubMedGoogle Scholar
- Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis. 2011;11:381–93. DOIPubMedGoogle Scholar
- Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18:306–25. DOIPubMedGoogle Scholar
- Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, Characterization of VIM-2, a carbapenem-hydrolyzing metallo β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44:891–7. DOIPubMedGoogle Scholar
- Riccio ML, Pallecchi L, Fontana R, Rossolini GM. In70 of plasmid pAX22, a blaVIM-1-containing integron carrying a new aminoglycoside phosphotransferase gene cassette. Antimicrob Agents Chemother. 2001;45:1249–53. DOIPubMedGoogle Scholar
- Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother. 2004;48:4606–10. DOIPubMedGoogle Scholar
- Leibovici L, Shraga I, Drucker M, Konigsberger H, Samra Z, Pitliks SD. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med. 1998;244:379–86. DOIPubMedGoogle Scholar
- Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81. DOIPubMedGoogle Scholar
- Gutiérrez O, Juan C, Cercenado E, Navarro F, Bouza E, Coll P, Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother. 2007;51:4329–35. DOIPubMedGoogle Scholar
- Rossolini GM, Luzzaro F, Migliavacca R, Mugnaioli C, Pini B, De Luca F, First countrywide survey of acquired metallo-β-lactamase in gram-negative pathogens in Italy. Antimicrob Agents Chemother. 2008;52:4023–9. DOIPubMedGoogle Scholar
- Juan C, Beceiro A, Gutiérrez O, Alberti S, Garau M, Pérez JL, Characterization of the new metallo-β-lactamase VIM-13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate in Spain. Antimicrob Agents Chemother. 2008;52:3589–96. DOIPubMedGoogle Scholar
- Peña C, Suárez C, Tubau F, Gutiérrez O, Domínguez A, Oliver A, Nosocomial spread of Pseudomonas aeruginosa producing the metallo-β-lactamase VIM-2 in a Spanish hospital: clinical and epidemiological implications. Clin Microbiol Infect. 2007;13:1026–9. DOIPubMedGoogle Scholar
- Riera E, Cabot G, Mulet X, García-Castillo M, Del Campo R, Juan C, Pseudomonas aeruginosa carbapenem resistance mechanism in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother. 2011;66:2022–7. DOIPubMedGoogle Scholar
- Viedma E, Juan C, Acosta J, Zamorano L, Otero JR, Sanz F, Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum b-lactamases GES-1 and GES-5 in Spain. Antimicrob Agents Chemother. 2009;53:4930–3. DOIPubMedGoogle Scholar
- Cantón R, Perez-Vazquez M, Oliver A, Sanchez Del Saz B, Gutiérrez MO, Martinez-Ferrer M, Evaluation of the Wider system, a new computer-assisted image-processing device for bacterial identification and susceptibility testing. J Clin Microbiol. 2000;38:1339–46.PubMedGoogle Scholar
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, vol. 26, no. 3. 16th informational supplement. M100–S16. Wayne (PA): The Institute; 2006.
- Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33:2233–9.PubMedGoogle Scholar
- Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol. 2004;42:5644–9. DOIPubMedGoogle Scholar
- Pournaras S, Maniati M, Petinaki E, Tzouvelekis LS, Tsakris A, Legakis NJ, Hospital outbreak of multiple clones of Pseudomonas aeruginosa carrying the unrelated metallo-beta-lactamase gene variants blaVIM-2 and blaVIM-4. J Antimicrob Chemother. 2003;51:1409–14. DOIPubMedGoogle Scholar
- Gibb AP, Tribuddharat C, Moore RA, Louie TJ, Krulicki W, Livermore DM, Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa with a new bla(IMP) allele, bla(IMP-7). Antimicrob Agents Chemother. 2002;46:255–8. DOIPubMedGoogle Scholar
- Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol. 2004;42:5094–101. DOIPubMedGoogle Scholar
- Ryoo NH, Lee K, Lim JB, Lee YH, Bae IK, Jeong SH. Outbreak by meropenem-resistant Pseudomonas aeruginosa producing IMP-6 metallo-beta-lactamase in a Korean hospital. Diagn Microbiol Infect Dis. 2009;63:115–7. DOIPubMedGoogle Scholar
- Deplano A, Rodriguez-Villalobos H, Glupczynski Y, Bogaerts P, Allemeersch D, Grimmelprez A, Emergence and dissemination of multidrug resistant clones of Pseudomonas aeruginosa producing VIM-2 metallo-beta-lactamase in Belgium. Euro Surveill. 2007;12:E070118.2.PubMedGoogle Scholar
- Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother. 2005;49:3538–40. DOIPubMedGoogle Scholar
- Castanheira M, Bell JM, Turnidge JD, Mathai D, Jones RN. Carbapenem resistance among Pseudomonas aeruginosa strains from India: evidence for nationwide endemicity of multiple metallo-beta-lactamase clones (VIM-2, −5, −6, and −11 and the newly characterized VIM-18). Antimicrob Agents Chemother. 2009;53:1225–7. DOIPubMedGoogle Scholar
- García-Castillo M, Del Campo R, Morosini MI, Riera E, Cabot G, Willems R, Wide dispersion of ST175 clone despite high genetic diversity of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical strains in 16 Spanish hospitals. J Clin Microbiol. 2011;49:2905–10. DOIPubMedGoogle Scholar
- Cholley P, Thouverez M, Hocquet D, van der Mee-Marquet N, Talon D, Bertrand X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol. 2011;49:2578–83. DOIPubMedGoogle Scholar
- Nemec A, Krizova L, Maixnerova M, Musilek M. Multidrug-resistant epidemic clones among bloodstream isolates of Pseudomonas aeruginosa in the Czech Republic. Res Microbiol. 2010;161:234–42. DOIPubMedGoogle Scholar
- Libisch B, Balogh B, Füzi M. Identification of two multidrug-resistant Pseudomonas aeruginosa clonal lineages with a countrywide distribution in Hungary. Curr Microbiol. 2009;58:111–6. DOIPubMedGoogle Scholar
- Elias J, Schoen C, Heinze G, Valenza G, Gerhaz E, Riedmiller H, Nosocomial outbreak of VIM-2 metallo-β-lactamase producing Pseudomonas aeruginosa associated with retrograde urography. Clin Microbiol Infect. 2010;16:1494–500. DOIPubMedGoogle Scholar
- Pagani L, Colinon C, Migliavacca R, Labonia M, Docquier JD, Nucleo E, Nosocomial outbreak caused by multidrug-resistant Pseudomonas aeruginosa producing IMP-13 metallo-beta-lactamase. J Clin Microbiol. 2005;43:3824–8. DOIPubMedGoogle Scholar
- Duljasz W, Gniadkowski M, Sitter S, Wojna A, Jebelean C. First organisms with acquired metallo-beta-lactamases (IMP-13, IMP-22, and VIM-2) reported in Austria. Antimicrob Agents Chemother. 2009;53:2221–2. DOIPubMedGoogle Scholar
- Acosta J, Merino L, Viedma E, Poza M, Sanz F, Otero JR, Multidrug-resistant Acinetobacter baumannii harboring OXA-24 carbapenemase, Spain. Emerg Infect Dis. 2011;17:1064–7. DOIPubMedGoogle Scholar
- Tam VH, Gamez EA, Weston JS, Gerard LN, Larocco MT, Caeiro JP, Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis. 2008;46:862–7. DOIPubMedGoogle Scholar
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 22nd informational supplement. M100–S22. Wayne (PA): The Institute; 2012.
Page created: June 21, 2012
Page updated: June 21, 2012
Page reviewed: June 21, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.