Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 8—August 2012
Research

VIM-2–producing Multidrug-Resistant Pseudomonas aeruginosa ST175 Clone, Spain

Esther Viedma, Carlos Juan, Jennifer Villa, Laura Barrado, M. Ángeles Orellana, Francisca Sanz, Joaquín R. Otero, Antonio Oliver, and Fernando ChavesComments to Author 
Author affiliations: Hospital Universitario 12 de Octubre, Madrid, Spain (E. Viedma, J. Villa, L. Barrado, M.Á. Orellana, F. Sanz, J.R. Otero, F. Chaves); and Hospital Universitario Son Espases, Palma de Mallorca, Spain (C. Juan, A. Oliver)

Main Article

Table A1

Clonal distribution, type of carbapenemase, and drug resistance patterns of MDR Pseudomonas isolates, Spain, January 2007–December 2010 *

Isolate No. isolates/y

Carbapenemase type (no. isolates) ST No. (%) resistant isolates
2007 2008 2009 2010 PIP/TZ CAZ FEP IMP MER ATM GEN TOB AMK CIP
All MDR isolates (183) 13 32 38 100 VIM-1, VIM-2, IMP-22, GES1–5 (146) NA 92 (50.3)/ 180 (98.4) 183 (100) 183 (100) 183 (100) 183 (100) 75 (41.0)/ 179 (97.8)† 178 (97.3) 177 (96.7) 77 (42.1) 172 (94)
P. aeruginosa (clonal types)
B (104) 0 5 23 76 VIM-2 (103), IMP-22 (1) 175, 175 21 (20.2)/ 101 (97.1)† 104 (100) 104 (100) 104 (100) 104 (100) 14 (13.5)/ 100 (95.2)† 104 (100) 104 (100) 26 (25) 104 (100)
A (29)‡ 8 16 4 1 GES 1/5 (29) 235 29 (100) 29 (100) 29 (100) 29 (100) 29 (100) 25 (86.2) 29 (100) 26 (89.6) 25 (86.2) 28 (96.5)
C (2) 0 0 1 1 VIM-2 (2) NA 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100)
D (2) 0 0 0 2 Noncarbapenemase (2) NA 2 (100) 2 (100) 2 (100) 2 (100) 2 (100) 0 2 (100) 2 (100) 2 (100) 2 (100)
Unique clones (40) 4 10 8 18 Noncarbapenemase (35) NA 31 (88.6)/ 35 (100)† 35 (100) 35 (100) 35 (100) 35 (100) 26 (74.3) 30 (85.7) 32 (65.7) 17 (48.3) 25 (71.4)
0 1 0 0 PA_5 VIM-2 NA 0 0 0 0 0 0 0 0 0 0
0 1 0 PA_10 VIM-2 NA 0 0 0 0 0 0
0 0 1 0 PA_12 VIM-1 NA 4 (80)/ 5 (100)† 5 (100) 5 (100) 5 (100) 5 (100) 4 (80) 5 (100) 5 (100) 3 (60) 5 (100)
0 0 1 0 PA_13 VIM-2 NA 0 0 0 0 0 0 0 0 0 0
0 0 0 1 PA_28 VIM-2 NA 0 0 0 0 0 0 0 0 0 0
P. putida (clonal types)
Unique clones (6) 1 1 2 2 0 NA 0 0 0 0 0 0 0 0 0 0
1 0 0 0 PP_1 VIM-2 NA 0 0 0 0 0 0 0 0 0 0
0 1 0 0 PP_11 VIM-2 NA 0 0 0 0 0 0 0 0 0 0
0 0 1 0 PP_14 VIM-2 NA 3 (50)/ 6 (100)† 6 (100) 6 (100) 6 (100) 6 (100) 4 (66.6) 6 (100) 6 (100) 2 (33.3) 6 (100)
0 0 1 0 PP_19 VIM-2 NA 0 0 0 0 0 0 0 0 0 0
0 0 1 0 PP25_VIM-1/VIM-2 NA 0 0 0 0 0 0 0 0 0 0
0 0 1 0 PP_27 VIM-2 NA 0 0 0 0 0 0 0 0 0 0

*MDR, multidrug resistant; ST, sequence type; PIP/TZ, piperacillin-tazobactam; CAZ, ceftazidime; FEP, cefepime; IMP, imipenem; MER, meropenem; ATM, aztreonam; GEN, gentamicin; TOB, tobramycin; AMK, amikacin; CIP, ciprofloxacin; NA, not available. None of the isolates showed resistance to colistin.
†Percentage drug-resistant isolates when the European Committee on Susceptibility Testing break point was applied.
‡Viedma et al. (16).

Main Article

References
  1. Aloush  V, Navon-Venezia  S, Seigman-Igra  Y, Cabili  S, Carmeli  Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006;50:438. DOIPubMedGoogle Scholar
  2. Livermore  DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002;34:63440. DOIPubMedGoogle Scholar
  3. Queenan  AM, Bush  K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20:44058. DOIPubMedGoogle Scholar
  4. Cornaglia  G, Giamarellou  H, Rossolini  GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis. 2011;11:38193. DOIPubMedGoogle Scholar
  5. Walsh  TR, Toleman  MA, Poirel  L, Nordmann  P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18:30625. DOIPubMedGoogle Scholar
  6. Poirel  L, Naas  T, Nicolas  D, Collet  L, Bellais  S, Cavallo  JD, Characterization of VIM-2, a carbapenem-hydrolyzing metallo β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44:8917. DOIPubMedGoogle Scholar
  7. Riccio  ML, Pallecchi  L, Fontana  R, Rossolini  GM. In70 of plasmid pAX22, a blaVIM-1-containing integron carrying a new aminoglycoside phosphotransferase gene cassette. Antimicrob Agents Chemother. 2001;45:124953. DOIPubMedGoogle Scholar
  8. Obritsch  MD, Fish  DN, MacLaren  R, Jung  R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother. 2004;48:460610. DOIPubMedGoogle Scholar
  9. Leibovici  L, Shraga  I, Drucker  M, Konigsberger  H, Samra  Z, Pitliks  SD. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med. 1998;244:37986. DOIPubMedGoogle Scholar
  10. Magiorakos  AP, Srinivasan  A, Carey  RB, Carmeli  Y, Falagas  ME, Giske  CG, Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:26881. DOIPubMedGoogle Scholar
  11. Gutiérrez  O, Juan  C, Cercenado  E, Navarro  F, Bouza  E, Coll  P, Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother. 2007;51:432935. DOIPubMedGoogle Scholar
  12. Rossolini  GM, Luzzaro  F, Migliavacca  R, Mugnaioli  C, Pini  B, De Luca  F, First countrywide survey of acquired metallo-β-lactamase in gram-negative pathogens in Italy. Antimicrob Agents Chemother. 2008;52:40239. DOIPubMedGoogle Scholar
  13. Juan  C, Beceiro  A, Gutiérrez  O, Alberti  S, Garau  M, Pérez  JL, Characterization of the new metallo-β-lactamase VIM-13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate in Spain. Antimicrob Agents Chemother. 2008;52:358996. DOIPubMedGoogle Scholar
  14. Peña  C, Suárez  C, Tubau  F, Gutiérrez  O, Domínguez  A, Oliver  A, Nosocomial spread of Pseudomonas aeruginosa producing the metallo-β-lactamase VIM-2 in a Spanish hospital: clinical and epidemiological implications. Clin Microbiol Infect. 2007;13:10269. DOIPubMedGoogle Scholar
  15. Riera  E, Cabot  G, Mulet  X, García-Castillo  M, Del Campo  R, Juan  C, Pseudomonas aeruginosa carbapenem resistance mechanism in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother. 2011;66:20227. DOIPubMedGoogle Scholar
  16. Viedma  E, Juan  C, Acosta  J, Zamorano  L, Otero  JR, Sanz  F, Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum b-lactamases GES-1 and GES-5 in Spain. Antimicrob Agents Chemother. 2009;53:49303. DOIPubMedGoogle Scholar
  17. Cantón  R, Perez-Vazquez  M, Oliver  A, Sanchez Del Saz  B, Gutiérrez  MO, Martinez-Ferrer  M, Evaluation of the Wider system, a new computer-assisted image-processing device for bacterial identification and susceptibility testing. J Clin Microbiol. 2000;38:133946.PubMedGoogle Scholar
  18. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, vol. 26, no. 3. 16th informational supplement. M100–S16. Wayne (PA): The Institute; 2006.
  19. Tenover  FC, Arbeit  RD, Goering  RV, Mickelsen  PA, Murray  BE, Persing  DH, Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33:22339.PubMedGoogle Scholar
  20. Curran  B, Jonas  D, Grundmann  H, Pitt  T, Dowson  CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol. 2004;42:56449. DOIPubMedGoogle Scholar
  21. Pournaras  S, Maniati  M, Petinaki  E, Tzouvelekis  LS, Tsakris  A, Legakis  NJ, Hospital outbreak of multiple clones of Pseudomonas aeruginosa carrying the unrelated metallo-beta-lactamase gene variants blaVIM-2 and blaVIM-4. J Antimicrob Chemother. 2003;51:140914. DOIPubMedGoogle Scholar
  22. Gibb  AP, Tribuddharat  C, Moore  RA, Louie  TJ, Krulicki  W, Livermore  DM, Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa with a new bla(IMP) allele, bla(IMP-7). Antimicrob Agents Chemother. 2002;46:2558. DOIPubMedGoogle Scholar
  23. Crespo  MP, Woodford  N, Sinclair  A, Kaufmann  ME, Turton  J, Glover  J, Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol. 2004;42:5094101. DOIPubMedGoogle Scholar
  24. Ryoo  NH, Lee  K, Lim  JB, Lee  YH, Bae  IK, Jeong  SH. Outbreak by meropenem-resistant Pseudomonas aeruginosa producing IMP-6 metallo-beta-lactamase in a Korean hospital. Diagn Microbiol Infect Dis. 2009;63:1157. DOIPubMedGoogle Scholar
  25. Deplano  A, Rodriguez-Villalobos  H, Glupczynski  Y, Bogaerts  P, Allemeersch  D, Grimmelprez  A, Emergence and dissemination of multidrug resistant clones of Pseudomonas aeruginosa producing VIM-2 metallo-beta-lactamase in Belgium. Euro Surveill. 2007;12:E070118.2.PubMedGoogle Scholar
  26. Lolans  K, Queenan  AM, Bush  K, Sahud  A, Quinn  JP. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother. 2005;49:353840. DOIPubMedGoogle Scholar
  27. Castanheira  M, Bell  JM, Turnidge  JD, Mathai  D, Jones  RN. Carbapenem resistance among Pseudomonas aeruginosa strains from India: evidence for nationwide endemicity of multiple metallo-beta-lactamase clones (VIM-2, −5, −6, and −11 and the newly characterized VIM-18). Antimicrob Agents Chemother. 2009;53:12257. DOIPubMedGoogle Scholar
  28. García-Castillo  M, Del Campo  R, Morosini  MI, Riera  E, Cabot  G, Willems  R, Wide dispersion of ST175 clone despite high genetic diversity of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical strains in 16 Spanish hospitals. J Clin Microbiol. 2011;49:290510. DOIPubMedGoogle Scholar
  29. Cholley  P, Thouverez  M, Hocquet  D, van der Mee-Marquet  N, Talon  D, Bertrand  X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol. 2011;49:257883. DOIPubMedGoogle Scholar
  30. Nemec  A, Krizova  L, Maixnerova  M, Musilek  M. Multidrug-resistant epidemic clones among bloodstream isolates of Pseudomonas aeruginosa in the Czech Republic. Res Microbiol. 2010;161:23442. DOIPubMedGoogle Scholar
  31. Libisch  B, Balogh  B, Füzi  M. Identification of two multidrug-resistant Pseudomonas aeruginosa clonal lineages with a countrywide distribution in Hungary. Curr Microbiol. 2009;58:1116. DOIPubMedGoogle Scholar
  32. Elias  J, Schoen  C, Heinze  G, Valenza  G, Gerhaz  E, Riedmiller  H, Nosocomial outbreak of VIM-2 metallo-β-lactamase producing Pseudomonas aeruginosa associated with retrograde urography. Clin Microbiol Infect. 2010;16:1494500. DOIPubMedGoogle Scholar
  33. Pagani  L, Colinon  C, Migliavacca  R, Labonia  M, Docquier  JD, Nucleo  E, Nosocomial outbreak caused by multidrug-resistant Pseudomonas aeruginosa producing IMP-13 metallo-beta-lactamase. J Clin Microbiol. 2005;43:38248. DOIPubMedGoogle Scholar
  34. Duljasz  W, Gniadkowski  M, Sitter  S, Wojna  A, Jebelean  C. First organisms with acquired metallo-beta-lactamases (IMP-13, IMP-22, and VIM-2) reported in Austria. Antimicrob Agents Chemother. 2009;53:22212. DOIPubMedGoogle Scholar
  35. Acosta  J, Merino  L, Viedma  E, Poza  M, Sanz  F, Otero  JR, Multidrug-resistant Acinetobacter baumannii harboring OXA-24 carbapenemase, Spain. Emerg Infect Dis. 2011;17:10647. DOIPubMedGoogle Scholar
  36. Tam  VH, Gamez  EA, Weston  JS, Gerard  LN, Larocco  MT, Caeiro  JP, Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis. 2008;46:8627. DOIPubMedGoogle Scholar
  37. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 22nd informational supplement. M100–S22. Wayne (PA): The Institute; 2012.

Main Article

Page created: June 21, 2012
Page updated: June 21, 2012
Page reviewed: June 21, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external