Volume 18, Number 9—September 2012
Research
Trends in Meningococcal Disease in the United States Military, 1971–2010
Figure 1

Figure 1. . . . Timeline showing 100 years of meningococcal disease incidence in the US population compared with members of the US Army (A) and effects of introduction of meningococcal vaccines (B; years in which the vaccine types were introduced into the military indicated by arrows). Rates are unadjusted for age matching. Data for the US Army and the general population for 1910–1946 from Brundage and Zollinger (2). General population data for 1967–1977 from Brundage and Zollinger (2) and for 1978–2009 from the Centers for Disease Control and Prevention (3). US Army data for 1964–1998 from Brundage et al. (1), 1999–2010 from personal communication with the Armed Forces Health Surveillance Center, and 2006–2009 from Naval Health Research Center Meningococcal Disease Surveillance. The incidence in the Army from 1982–1989 of 2.1 cases per 100,000 person-years was deduced from in Brundage et al. (1) by using the percentage of each military division’s percentage contribution to the total active-duty military populations during 1982–1989, with each year’s percentages estimated from those of the 1990–1992 average. These percentages were stable within ±2 percentage points during 1990–2006. Poly, polysaccharide; C, Neisseria meningitidis serogroup C; A, N. meningitidis serogroup A; quad, quadravalent (N. meningitidis serogroups A, C, W-135, and Y); conjug, conjugate.
References
- Brundage JF, Ryan MA, Feighner BH, Erdtmann FJ. Meningococcal disease among United States military service members in relation to routine uses of vaccines with different serogroup-specific components, 1964–1998. Clin Infect Dis. 2002;35:1376–81. DOIPubMedGoogle Scholar
- Brundage JF, Zollinger WD. Evolution of meningococcal disease epidemiology in the US Army. In: Vedros NA, editor. Evolution of meningococcal disease, vol. I. Boca Raton (FL): CRC Press; 1987. p. 1885–1921.
- Centers for Disease Control and Prevention. Active Bacterial Core Surveillance (ABCs) report, Emerging Infections Program Network, Neisseria meningitidis, 2009. 2010 [cited 2012 Jun 12]. http://www.cdc.gov/abcs/reports-findings/survreports/mening09.pdf
- Armed Forces Epidemiological Board Infectious Diseases Control Subcommittee. Vaccines in the military: a Department of Defense–wide review of vaccine policy and practice. A report of the Infectious Diseases Control Subcommittee of the Armed Forces Epidemiological Board. Falls Church (VA): The Board; 1999.
- Centers for Disease Control and Prevention. Meningococcal disease and college students. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2000;49(RR-7):13–20.PubMedGoogle Scholar
- Centers for Disease Control and Prevention. Prevention and control of meningococcal disease. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2010;49(RR-7):1–10.
- Rubertone MV, Brundage JF. The Defense Medical Surveillance System and the Department of Defense Serum Repository: glimpses of the future of public health surveillance. Am J Public Health. 2002;92:1900–4. DOIPubMedGoogle Scholar
- Breslow NE, Day NE. Statistical methods in cancer research. Volume II—the design and analysis of cohort studies. Lyon (France): International Agency for Research on Cancer; 1987.
- Young LS, LaForce FM, Head JJ, Feeley JC, Bennett JV. A simultaneous outbreak of meningococcal and influenza infections. N Engl J Med. 1972;287:5–9. DOIPubMedGoogle Scholar
- Moore PS, Hierholzer J, DeWitt W, Gouan K, Djore D, Lippeveld T, Respiratory viruses and mycoplasma as cofactors for epidemic group A meningococcal meningitis. JAMA. 1990;264:1271–5. DOIPubMedGoogle Scholar
- Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM. Meningococcal disease. N Engl J Med. 2001;344:1378–88. DOIPubMedGoogle Scholar
- Crum N, Chapman FA, Russell KL, Hale BR. The many faces of meningococcal disease: a case series and review of presentations and treatment options. Infect Dis Clin Pract. 2005;13:5–9. DOIGoogle Scholar
- Artenstein MS, Rust JH Jr, Hunter DH, Lamson TH, Buescher EL. Acute respiratory disease and meningococcal infection in army recruits. JAMA. 1967;201:1004–7. DOIPubMedGoogle Scholar
- Keyserling HL, Pollard AJ, DeTora LM, Gilmet GP. Experience with MCV-4, a meningococcal, diphtheria toxoid conjugate vaccine against serogroups A, C, Y and W-135. Expert Rev Vaccines. 2006;5:445–59. DOIPubMedGoogle Scholar
- Auckland C, Gray S, Borrow R, Andrews N, Goldblatt D, Ramsay M, Clinical and immunologic risk factors for meningococcal C conjugate vaccine failure in the United Kingdom. J Infect Dis. 2006;194:1745–52. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Updated recommendations for use of meningococcal conjugate vaccines—Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Morb Mortal Wkly Rep. 2011;60:72–6.PubMedGoogle Scholar
- Bilukha OO, Rosenstein N. Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 2005;54(RR-7):1–21.PubMedGoogle Scholar
- Bruce MG, Rosenstein NE, Capparella JM, Shutt KA, Perkins BA, Collins M. Risk factors for meningococcal disease in college students. JAMA. 2001;286:688–93. DOIPubMedGoogle Scholar