Volume 19, Number 11—November 2013
Dispatch
Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia
Table 1
PCRs (reference) | Primers, 5′→3′ | Nested fragment size, region (primer locations on the reference) genome)† | Type of CoV (no.) |
---|---|---|---|
Nested pan-CoV-I (6) | PLQ-F1, CGTTGGIACWAAYBTVCCWYTICARBTRGG | ≈400 nt, RdRp (18310–187450) | α-CoV (8), β-CoV (1) |
PLQ-R1, GGTCATKATAGCRTCAVMASWWGCNACATG | |||
PLQ-F2, GGCWCCWCCHGGNGARCAATT | |||
PLQ-R2, GGWAWCCCCAYTGYTGWAYRTC | |||
Nested pan-CoV-II (7) | WT-COV-F1, GGTTGGGAYTAYCCHAARTGTGA | ≈430 nt, RdRp (15260–15700) | α-CoV (5), β-CoV (2) |
WT-COV-R1, CCATCATCASWYRAATCATCATA | |||
WT-COV-F2, GAYTAYCCHAARTGTGAYAGAGC | |||
WT-COV-F3, GAYTAYCCHAARTGTGAUMGWGC | |||
Hemi-nested RdRp-sequence assay (9) | EMC-SeqRdRP-Rev, GCATWGCNCWGTCACACTTAGG | ≈230 nt, RdRp (15048–15290) | α-CoV (2), β-CoV (1) |
EMC-SeqRdRP-Fwd, TGCTATWAGTGCTAAGAATAGRGC | |||
EMC-SeqRdRP-Rnest, CACTTAGGRTARTCCCAWCCCA | |||
Hemi-nested N-sequence assay (9) | EMC-SeqN-Fwd, CCTTCGGTACAGTGGAGCCA | ≈280 nt,N seq (29,549–29,860) | – |
EMC-SeqN-Rev, GATGGGGTTGCCAAACACAAAC | |||
EMC-SeqN-Fnest, TGACCCAAAGAATCCCAACTAC | |||
Nested CII-pan-CoV-III | NM-CoV-2F1, ACWGTTCARGGICCWCCIGG | ≈355 nt, helicase (17,060–17,410) | β-CoV (2) |
NM-CoV-2F2, GTTCARGGGCCWCCGGGNAC | |||
NM-CoV-2R1, GGCAGCTGWGCWGGRTCICCNACRTA | |||
NM-CoV-2R2, AGCTGWGCWGGRTCGCCIACRTANAC | |||
Nested CII-MERS-RdRp | NM-HCOV-F1, GTGCTAAGAATAGAGCTCGCACT NM-HCOV-F2, AGAGCTCGCACTGTTGCAGGC | ≈190 nt, RdRp (15068–15249) | β-CoV (1, MERS CoV) |
NM-HCOV-F2, AGAGCTCGCACTGTTGCAGGC | |||
NM-HCOV-R1, ACCCATAAGATGCGGATTATCAAC | |||
NM-HCOV-R2, TGCGGATTATCAACATCTTTGTAC | |||
Hemi-nested CII-MERS N sequence | NM-NSeq-F-1, ACTTCCTTCGGTACAGTGGAGC | ≈170 nt, N seq (29545–29713) | – |
NM-NSeq-R-1, GGCACTGTTCACTTGCAATC | |||
NM-NSeq-R-2, GGAGGTTCAGACATTTGGTCT | |||
upE and ORF1b real-time assays (8) | upE-Fwd: GCAACGCGCGATTCAGTT | Upstream of E gene and ORF 1b | – |
upE-Prb: FAM-CTCTTCACATAATCGCCCCGAGCTCG-TAMRA | |||
upE-Rev: GCCTCTACACGGGACCCATA | |||
ORF1b-Fwd: TTCGATGTTGAGGGTGCTCAT | |||
ORF1b-Prb: FAM-CCCGTAATGCATGTGGCACCAATGT-TAMRA | |||
ORF1b-Rev: TCACACCAGTTGAAAATCCTAATTG |
* CoV, coronavirus; MERS, Middle East respiratory syndrome; RdRp, RNA-dependent RNA polymerase; –, not applicable; ORF, open reading frame.
†Primer locations are based on human β-CoV 2c EMC/2012, complete genome (GenBank accession no. JX869059).
References
- Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–20 . DOIPubMedGoogle Scholar
- Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369:407–16. DOIPubMedGoogle Scholar
- Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE, Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg Infect Dis. 2013;19:456–9. DOIPubMedGoogle Scholar
- Anthony SJ, Ojeda-Flores R, Rico-Chavez O, Navarrete-Macias I, Zambrana-Torrelio CM, Rostal MK, Coronaviruses in bats from Mexico. J Gen Virol. 2013;94:1028–38. DOIPubMedGoogle Scholar
- Ithlete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa [letter]. Emerg Infect Dis. 2013:19 [cited 2013 Aug 19]. http://wwwnc.cdc.gov/eid/article/19/10/13-0946_article.htm
- Quan PL, Firth C, Street C, Henriquez JA, Petrosov A, Tashmukhamedova A, Identification of a severe acute respiratory syndrome coronavirus–like virus in a leaf-nosed bat in Nigeria. MBio. 2010;1:e00208–10 .DOIPubMedGoogle Scholar
- Watanabe S, Masangkay JS, Nagata N, Morikawa S, Mizutani T, Fukushi S, Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis. 2010;16:1217–23. DOIPubMedGoogle Scholar
- Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17:20288.PubMedGoogle Scholar
- Corman VM, Muller MA, Costabel U, Timm J, Binger T, Meyer B, Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012;17:20334.PubMedGoogle Scholar
- Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science. 2005;307:580–4. DOIPubMedGoogle Scholar
- Smith I, Wang LF. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr Opin Virol. 2013;3:84–91 .DOIPubMedGoogle Scholar
- Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Severe acute respiratory syndrome coronavirus–like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:14040–5. DOIPubMedGoogle Scholar
- Poon LL, Chu DK, Chan KH, Wong OK, Ellis TM, Leung YH, Identification of a novel coronavirus in bats. J Virol. 2005;79:2001–9. DOIPubMedGoogle Scholar
- Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–9. DOIPubMedGoogle Scholar
- Khan SU, Gurley ES, Hossain MJ, Nahar N, Sharker MA, Luby SP. A randomized controlled trial of interventions to impede date palm sap contamination by bats to prevent Nipah virus transmission in Bangladesh. PLoS ONE. 2012;7:e42689. DOIPubMedGoogle Scholar
Page created: August 23, 2013
Page updated: August 23, 2013
Page reviewed: August 23, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.