Volume 19, Number 11—November 2013
Dispatch
Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia
Table 1
PCRs and primers used in CoV detection*
PCRs (reference) | Primers, 5′→3′ | Nested fragment size, region (primer locations on the reference) genome)† | Type of CoV (no.) |
---|---|---|---|
Nested pan-CoV-I (6) | PLQ-F1, CGTTGGIACWAAYBTVCCWYTICARBTRGG | ≈400 nt, RdRp (18310–187450) | α-CoV (8), β-CoV (1) |
PLQ-R1, GGTCATKATAGCRTCAVMASWWGCNACATG | |||
PLQ-F2, GGCWCCWCCHGGNGARCAATT | |||
PLQ-R2, GGWAWCCCCAYTGYTGWAYRTC | |||
Nested pan-CoV-II (7) | WT-COV-F1, GGTTGGGAYTAYCCHAARTGTGA | ≈430 nt, RdRp (15260–15700) | α-CoV (5), β-CoV (2) |
WT-COV-R1, CCATCATCASWYRAATCATCATA | |||
WT-COV-F2, GAYTAYCCHAARTGTGAYAGAGC | |||
WT-COV-F3, GAYTAYCCHAARTGTGAUMGWGC | |||
Hemi-nested RdRp-sequence assay (9) | EMC-SeqRdRP-Rev, GCATWGCNCWGTCACACTTAGG | ≈230 nt, RdRp (15048–15290) | α-CoV (2), β-CoV (1) |
EMC-SeqRdRP-Fwd, TGCTATWAGTGCTAAGAATAGRGC | |||
EMC-SeqRdRP-Rnest, CACTTAGGRTARTCCCAWCCCA | |||
Hemi-nested N-sequence assay (9) | EMC-SeqN-Fwd, CCTTCGGTACAGTGGAGCCA | ≈280 nt,N seq (29,549–29,860) | – |
EMC-SeqN-Rev, GATGGGGTTGCCAAACACAAAC | |||
EMC-SeqN-Fnest, TGACCCAAAGAATCCCAACTAC | |||
Nested CII-pan-CoV-III | NM-CoV-2F1, ACWGTTCARGGICCWCCIGG | ≈355 nt, helicase (17,060–17,410) | β-CoV (2) |
NM-CoV-2F2, GTTCARGGGCCWCCGGGNAC | |||
NM-CoV-2R1, GGCAGCTGWGCWGGRTCICCNACRTA | |||
NM-CoV-2R2, AGCTGWGCWGGRTCGCCIACRTANAC | |||
Nested CII-MERS-RdRp | NM-HCOV-F1, GTGCTAAGAATAGAGCTCGCACT NM-HCOV-F2, AGAGCTCGCACTGTTGCAGGC | ≈190 nt, RdRp (15068–15249) | β-CoV (1, MERS CoV) |
NM-HCOV-F2, AGAGCTCGCACTGTTGCAGGC | |||
NM-HCOV-R1, ACCCATAAGATGCGGATTATCAAC | |||
NM-HCOV-R2, TGCGGATTATCAACATCTTTGTAC | |||
Hemi-nested CII-MERS N sequence | NM-NSeq-F-1, ACTTCCTTCGGTACAGTGGAGC | ≈170 nt, N seq (29545–29713) | – |
NM-NSeq-R-1, GGCACTGTTCACTTGCAATC | |||
NM-NSeq-R-2, GGAGGTTCAGACATTTGGTCT | |||
upE and ORF1b real-time assays (8) | upE-Fwd: GCAACGCGCGATTCAGTT | Upstream of E gene and ORF 1b | – |
upE-Prb: FAM-CTCTTCACATAATCGCCCCGAGCTCG-TAMRA | |||
upE-Rev: GCCTCTACACGGGACCCATA | |||
ORF1b-Fwd: TTCGATGTTGAGGGTGCTCAT | |||
ORF1b-Prb: FAM-CCCGTAATGCATGTGGCACCAATGT-TAMRA | |||
ORF1b-Rev: TCACACCAGTTGAAAATCCTAATTG |
* CoV, coronavirus; MERS, Middle East respiratory syndrome; RdRp, RNA-dependent RNA polymerase; –, not applicable; ORF, open reading frame.
†Primer locations are based on human β-CoV 2c EMC/2012, complete genome (GenBank accession no. JX869059).
References
- Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–20 . DOIPubMedGoogle Scholar
- Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369:407–16. DOIPubMedGoogle Scholar
- Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE, Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg Infect Dis. 2013;19:456–9. DOIPubMedGoogle Scholar
- Anthony SJ, Ojeda-Flores R, Rico-Chavez O, Navarrete-Macias I, Zambrana-Torrelio CM, Rostal MK, Coronaviruses in bats from Mexico. J Gen Virol. 2013;94:1028–38. DOIPubMedGoogle Scholar
- Ithlete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa [letter]. Emerg Infect Dis. 2013:19 [cited 2013 Aug 19]. http://wwwnc.cdc.gov/eid/article/19/10/13-0946_article.htm
- Quan PL, Firth C, Street C, Henriquez JA, Petrosov A, Tashmukhamedova A, Identification of a severe acute respiratory syndrome coronavirus–like virus in a leaf-nosed bat in Nigeria. MBio. 2010;1:e00208–10 .DOIPubMedGoogle Scholar
- Watanabe S, Masangkay JS, Nagata N, Morikawa S, Mizutani T, Fukushi S, Bat coronaviruses and experimental infection of bats, the Philippines. Emerg Infect Dis. 2010;16:1217–23. DOIPubMedGoogle Scholar
- Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17:20288.PubMedGoogle Scholar
- Corman VM, Muller MA, Costabel U, Timm J, Binger T, Meyer B, Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill. 2012;17:20334.PubMedGoogle Scholar
- Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science. 2005;307:580–4. DOIPubMedGoogle Scholar
- Smith I, Wang LF. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr Opin Virol. 2013;3:84–91 .DOIPubMedGoogle Scholar
- Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Severe acute respiratory syndrome coronavirus–like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:14040–5. DOIPubMedGoogle Scholar
- Poon LL, Chu DK, Chan KH, Wong OK, Ellis TM, Leung YH, Identification of a novel coronavirus in bats. J Virol. 2005;79:2001–9. DOIPubMedGoogle Scholar
- Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–9. DOIPubMedGoogle Scholar
- Khan SU, Gurley ES, Hossain MJ, Nahar N, Sharker MA, Luby SP. A randomized controlled trial of interventions to impede date palm sap contamination by bats to prevent Nipah virus transmission in Bangladesh. PLoS ONE. 2012;7:e42689. DOIPubMedGoogle Scholar