Volume 19, Number 5—May 2013
Research
Full-Genome Deep Sequencing and Phylogenetic Analysis of Novel Human Betacoronavirus
Table 2
Nonconsensus variants detected in the sequence of a novel human betacoronavirus
Name* | Start† | End | >0.01–0.05‡ | >0.05–0.1 | >0.1 | Total§ | Length | %¶# |
---|---|---|---|---|---|---|---|---|
NSP9 | 12659 | 12988 | 3 | 0 | 0 | 3 | 329 | 0.91 |
NSP10 | 12989 | 13408 | 3 | 0 | 0 | 3 | 419 | 0.72 |
NSP14 | 18001 | 19572 | 6 | 1 | 1 | 8 | 1571 | 0.51 |
NSP6 | 10937 | 11812 | 4 | 0 | 0 | 4 | 875 | 0.46 |
NSP3 | 2837 | 8497 | 25 | 0 | 0 | 25 | 5660 | 0.44 |
NSP12 | 13432 | 16206 | 11 | 1 | 0 | 12 | 2774 | 0.43 |
NSP7 | 11813 | 12061 | 1 | 0 | 0 | 1 | 248 | 0.40 |
NSP5 | 10019 | 10936 | 3 | 0 | 0 | 3 | 917 | 0.33 |
N | 28565 | 29806 | 4 | 0 | 0 | 4 | 1241 | 0.32 |
S | 21455 | 25516 | 12 | 0 | 1 | 13 | 4061 | 0.32 |
ORF 4a | 25851 | 26180 | 1 | 0 | 0 | 1 | 329 | 0.30 |
M | 27852 | 28511 | 2 | 0 | 0 | 2 | 659 | 0.30 |
ORF 8b | 28761 | 29099 | 1 | 0 | 0 | 1 | 338 | 0.30 |
NSP13 | 16307 | 18000 | 5 | 0 | 0 | 5 | 1693 | 0.30 |
NSP4 | 8498 | 10018 | 4 | 0 | 0 | 4 | 1520 | 0.26 |
NSP2 | 857 | 2836 | 4 | 0 | 0 | 4 | 1979 | 0.20 |
NSP8 | 12062 | 12658 | 1 | 0 | 0 | 1 | 596 | 0.17 |
ORF 4b | 26092 | 26832 | 0 | 1 | 0 | 1 | 740 | 0.14 |
NSP15 | 19573 | 20601 | 1 | 0 | 0 | 1 | 1028 | 0.10 |
NSP1 | 278 | 856 | 0 | 0 | 0 | 0 | 578 | 0.00 |
NSP11 | 13409 | 13453 | 0 | 0 | 0 | 0 | 44 | 0.00 |
NSP16 | 20602 | 21513 | 0 | 0 | 0 | 0 | 911 | 0.00 |
ORF 3 | 25531 | 25842 | 0 | 0 | 0 | 0 | 311 | 0.00 |
ORF 5 | 26839 | 27513 | 0 | 0 | 0 | 0 | 674 | 0.00 |
E | 27589 | 27837 | 0 | 0 | 0 | 0 | 248 | 0.00 |
*ORF nomenclature is from van Boheemen et al. (3). ORF, open reading frame; NSP, nonstructural protein.
†Nucleotide position in England/Qatar/2012 genome.
‡No. nucleotide positions showing the indicated fraction of nonconsensus nucleotides. Only positions with a minimum of 1,000-fold coverage and a Phred quality score of 30 were included.
§No. nucleotide positions with >0.01 (1%) nonconsensus nucleotides.
¶Total no. positions with variation divided by length of ORF) × 100.
#ORFs were sorted by decreasing amino acid percentage change.
References
- Haagmans BL, Andeweg AC, Osterhaus AD. The application of genomics to emerging zoonotic viral diseases. PLoS Pathog. 2009;5:e1000557. DOIPubMedGoogle Scholar
- Bolles M, Donaldson E, Baric R. SARS-CoV and emergent coronaviruses: viral determinants of interspecies transmission. Curr Opin Virol. 2011;1:624–34.
- Bermingham A, Chand M, Brown C, Aarons E, Tong C, Langrish C, Severe respiratory illness caused by a novel coronavirus in a patient transferred to the United Kingdom from the Middle East, September 2012. Euro Surveill. 2012;17:20290 .PubMedGoogle Scholar
- Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–20. DOIPubMedGoogle Scholar
- Corman VM, Eckerle I, Bleicker T, Zaki A, Landt O, Eschbach-Bludau M, Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill. 2012;17:20285 .PubMedGoogle Scholar
- World Health Organization. Novel coronavirus infection–update 21 February 2013 [cited 2013 Feb 21]. http://www.who.int/csr/don/2013_02_21/en/index.html
- Watson SJ, Welkers MR, Depledge DP, Coulter E, Breuer JM, de Jong MD, Viral population analysis and minority-variant detection using short read next-generation sequencing. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120205. DOIPubMedGoogle Scholar
- Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. DOIPubMedGoogle Scholar
- Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9. DOIPubMedGoogle Scholar
- Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics. 2010;Chapter 11:Unit 11.5.
- Gladman S, Seemann T. VelvetOptimiser [cited 2012 Oct 22]. http://www.vicbioinformatics.com/software.velvetoptimiser.shtml
- Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. DOIPubMedGoogle Scholar
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9. DOIPubMedGoogle Scholar
- Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. DOIPubMedGoogle Scholar
- Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73. DOIPubMedGoogle Scholar
- Health Protection Agency. Genetic sequence information for scientists about the novel coronavirus 2012 [2013 Feb 18]. http://www.hpa.org.uk/webw/HPAweb&HPAwebStandard/HPAweb_C/1317136246479
- Reusken CB, Lina PH, Pielaat A, de Vries A, Dam-Deisz C, Adema J, Circulation of group 2 coronaviruses in a bat species common to urban areas in Western Europe. Vector Borne Zoonotic Dis. 2010;10:785–91. DOIPubMedGoogle Scholar
- Falcón A, Vázquez-Morón S, Casas I, Aznar C, Ruiz G, Pozo F, Detection of alpha and betacoronaviruses in multiple Iberian bat species. Arch Virol. 2011;156:1883–90. DOIPubMedGoogle Scholar
- Zhao Z, Li H, Wu X, Zhong Y, Zhang K, Zhang YP, Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol. 2004;4:21. DOIPubMedGoogle Scholar
- Salemi M, Fitch WM, Ciccozzi M, Ruiz-Alvarez MJ, Rezza G, Lewis MJ. Severe acute respiratory syndrome coronavirus sequence characteristics and evolutionary rate estimate from maximum likelihood analysis. J Virol. 2004;78:1602–3. DOIPubMedGoogle Scholar
- Pyrc K, Dijkman R, Deng L, Jebbink MF, Ross HA, Berkhout B, Mosaic structure of human coronavirus NL63, one thousand years of evolution. J Mol Biol. 2006;364:964–73. DOIPubMedGoogle Scholar
- Lau SK, Lee P, Tsang AK, Yip CC, Tse H, Lee RA, Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol. 2011;85:11325–37. DOIPubMedGoogle Scholar
- Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:276–8. DOIPubMedGoogle Scholar
- Vijgen L, Keyaerts E, Moes E, Thoelen I, Wollants E, Lemey P, Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol. 2005;79:1595–604. DOIPubMedGoogle Scholar
- Lau SK, Woo PC, Li KS, Huang Y, Wang M, Lam CS, Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology. 2007;367:428–39. DOIPubMedGoogle Scholar
- Huynh J, Li S, Yount B, Smith A, Sturges L, Olsen JC, Evidence supporting a zoonotic origin of human coronavirus strain NL63. J Virol. 2012;86:12816–25. DOIPubMedGoogle Scholar
- Woo PC, Lau SK, Li KS, Poon RW, Wong BH, Tsoi HW, Molecular diversity of coronaviruses in bats. Virology. 2006;351:180–7. DOIPubMedGoogle Scholar
- Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, Prevalence and genetic diversity of coronaviruses in bats from China. J Virol. 2006;80:7481–90. DOIPubMedGoogle Scholar
- Yip CW, Hon CC, Shi M, Lam TT, Chow KY, Zeng F, Phylogenetic perspectives on the epidemiology and origins of SARS and SARS-like coronaviruses. Infect Genet Evol. 2009;9:1185–96. DOIPubMedGoogle Scholar
- Müller MA, Raj VS, Muth D, Meyer B, Kallies S, Smits SL, Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. MBio. 2012;3:e00515-12.