Skip directly to search Skip directly to A to Z list Skip directly to page options Skip directly to site content

Volume 19, Number 6—June 2013


Murine Typhus in Humans, Yucatan, Mexico

Cite This Article


Highlight and copy the desired format.

EID Dzul-Rosado K, González-Martínez P, Peniche-Lara G, Zavala-Velázquez J, Zavala-Castro J. Murine Typhus in Humans, Yucatan, Mexico. Emerg Infect Dis. 2013;19(6):1021-1022.
AMA Dzul-Rosado K, González-Martínez P, Peniche-Lara G, et al. Murine Typhus in Humans, Yucatan, Mexico. Emerging Infectious Diseases. 2013;19(6):1021-1022. doi:10.3201/eid1906.121400.
APA Dzul-Rosado, K., González-Martínez, P., Peniche-Lara, G., Zavala-Velázquez, J., & Zavala-Castro, J. (2013). Murine Typhus in Humans, Yucatan, Mexico. Emerging Infectious Diseases, 19(6), 1021-1022.

To the Editor: Rickettsia typhi is the causal agent of murine typhus, a febrile illness affecting humans worldwide (1). In Mexico, recent studies demonstrated a 14% prevalence of antibodies against typhus group rickettsiae in healthy adult blood donors in Mexico City, and a recent nonfatal case of endemic typhus was reported in Yucatan (2,3).

In May 2011, a 42-year-old woman and her 12-year-old son sought care at the clinical service of the Autonomous University of Yucatan. They had malaise, headache, fever (39°C), fibromyalgia, sore throat, and fatigue and an erythematous rash on the chest that after 6 days spread to the abdomen and extremities.

Dengue fever was diagnosed, and the patients were treated empirically with acyclovir, methanesulfonamide, N-(4-nitro-2-phenoxyphenyl) and clarithromycin. Dengue could not be confirmed by laboratory testing.

Murine typhus was diagnosed on the basis of PCR amplification and immunofluorescent assay for antibodies to R. typhi. Rickettsia species was determined by sequencing of rickettsial genes. Three serum samples were collected from the woman (8, 12, and 16 days after illness onset) and 1 from the boy (8 days) in 3.8% sodium citrate as anticoagulant, and DNA was extracted immediately by QIAamp DNA Blood Mini Kit (QIAGEN Valencia, CA, USA) in accordance with the manufacturer’s instructions. Single-step PCR amplification was performed by using genus-specific primers for the rickettsial 17-kDa protein and citrate synthase (gltA) genes as reported (4)

Sequences of the citrate synthase and 17-kDa PCR products were compared at the National Center for Biotechnology Information BLAST software (5). Three PCR amplicons of both genes were fully sequenced and compared with sequences in GenBank. The 17-kDa and citrate synthase fragment sequences (GenBank accession nos. JX198507 and JX458814) showed 99% and 100% identity, respectively, with R. typhi strain Wilmington strain (GenBank accession no. AE017197.1) (Table).

Immunofluorescent assay was performed by using R. rickettsii and R. typhi antigen fixed on slides. We examined the serum samples for IgG and IgM, assessing reactivity of γ chain–specific and μ heavy chain–specific secondary conjugates, respectively, with rickettsial antigens. All 3 samples from the woman and the sample from the boy contained antibodies to R. typhi (Table). Both patients were treated with 100 mg of oral doxycycline 2×/day for 7 days (boy), and 10 days (woman); symptoms improved in 72 hours for the child. The woman’s symptoms resolved completely in 5 days.

Typhus has been endemic in Mexico since before the conquest period (6). Socioeconomic aspects play a major role in zoonotic diseases, such as rickettsioses, especially in their distribution in urban and suburban areas because of factors such as marginalized communities, animal breeding, education levels, poverty, and social exclusion from health systems.

Overcrowding resulting from migration from rural areas to large urban centers contributes to increased zoonoses in urban areas. Also contributing is the ecologic imbalance of flora and fauna associated with deteriorating sanitary conditions in areas where mammals involved in the cycle of R. typhi, such as rodents and opossum, may live in the same habitat as humans and colonize backyards, waste deposit area, and areas around the neighborhoods where they can find food. The concurrence and presence of mammals, vectors, and humans may contribute to maintaining transmission of endemic typhus in a reduced area, with the possibility to cause outbreaks (7,8). Housing conditions and culture, such as courtyards with vegetation and presence of pets, in several suburban areas of Yucatán encourage close contact between humans and possible reservoirs for several infectious diseases, such as mice, rats, opossums, dogs and cats, and their ectoparasites (9).

Because housing and cultural conditions are similar in all countries of Latin America, endemic typhus probably is transmitted in the same way: by coexistence with domestic animals and close contact with wild reservoirs. Epidemiologic control should be closely linked to education aimed at encouraging villagers to interrupt the cycle of transmission and thus prevent the disease.

We have confirmed the presence of murine typhus in Yucatan. The finding of human cases demonstrates the need to consider R. typhi infection in the differential diagnosis of febrile illnesses considered endemic in Yucatan, such as dengue fever and leptospirosis (10). Early and accurate diagnosis should enable physicians to treat this disease appropriately and early in the clinical course to prevent increased illness and death.


We thank to members of the Red Iberoamericana para la Investigación y Control de las Enfermedades Rickettsiales for providing useful information for the preparation of this manuscript.

This research was supported by grants from the Consejo Nacional de Ciencia y Tecnología (CB-2008-1-99890) to J.Z.-C. and facilitated by Ciencia y Tecnologia para el Desarrollo. This work was done at the Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mexico.

Karla Dzul-Rosado, Pedro González-Martínez, Gaspar Peniche-Lara, Jorge Zavala-Velázquez, and Jorge Zavala-CastroComments to Author 

Author affiliations: Universidad Autónoma de Yucatán, Yucatan, México


  1. Azad AF. Epidemiology of murine typhus. Annu Rev Entomol. 1990;35:55369 . DOIPubMed
  2. Acuna-Soto R, Calderón-Romero L, Romero-López D, Bravo-Lindoro A. Murine typhus in Mexico City. Trans R Soc Trop Med Hyg. 2000;94:45. DOIPubMed
  3. Zavala-Castro JE, Zavala-Velázquez JE, Sulú-Uicab JE. Murine typhus in child, Yucatan, Mexico. Emerg Infect Dis. 2009;15:9724. DOIPubMed
  4. Regnery RL, Spruill CL, Plikaytis BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991;173:157689 .PubMed
  5. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389402. DOIPubMed
  6. Martínez-Mendoza M. Historia del tifo epidémico desde la época prehispánica hasta nuestros días. Sistema Nacional de Vigilancia Epidemiologica. 2005;22:14.
  7. Nogueras MM, Cardeñosa N, Sanfeliu I, Muñoz T, Font B, Segura F. Evidence of infection in humans with Rickettsia typhi and Rickettsia felis in Catalonia in the northeast of Spain. Ann N Y Acad Sci. 2006;1078:15961. DOIPubMed
  8. Shazberg G, Moise J, Terespolsky N, Hurvitz H. Family outbreak of Rickettsia conorii infection. Emerg Infect Dis. 1999;5:7234. DOIPubMed
  9. Reyes-Novelo E, Ruíz-Piña H, Escobedo-Ortegón J, Rodríguez-Vivas I, Bolio-González M, Polanco-Rodríguez Á, Situación actual y perspectivas para el estudio de las enfermedades zoonóticas emergentes, reemergentes y olvidadas en la Península de Yucatán, México. Tropical and Subtropical Agroecosystems. 2011;14:3554.
  10. Zavala-Castro JE, Dzul-Rosado KR, León JJ, Walker DH, Zavala-Velázquez JE. Short report: Rickettsia felis outer membrane protein A: a potential tool for diagnosis of patients with flea-borne spotted fever. Am J Trop Med Hyg. 2008;79:9036 .PubMed


Cite This Article

DOI: 10.3201/eid1906.121400

Related Links

Table of Contents – Volume 19, Number 6—June 2013


Please use the form below to submit correspondence to the authors or contact them at the following address:

Jorge Zavala-Castro, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, México. Avenida Itzaés # 490 x Calle 59 Colonia Centro C.P. 97000 Mérida, Yucatán, México

character(s) remaining.

Comment submitted successfully, thank you for your feedback.