Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 19, Number 8—August 2013
Research

Extended-Spectrum β-Lactamase– and AmpC-Producing Enterobacteria in Healthy Broiler Chickens, Germany

Felix Reich, Viktoria Atanassova, and Günter KleinComments to Author 
Author affiliations: University of Veterinary Medicine Hannover, Hannover, Germany

Main Article

Figure

Phenotype distribution and dendrogram of 78 enterobacteria isolates from broiler chickens at the slaughterhouse, Germany, 2010. The dendrogram was generated by the unweighted pair-group method with arithmetic mean and Pearson correlation; trees were collapsed at a cutoff value of 80%. CEP, cefepime; FEP/CLA, cefepime/clavulanic acid; CTX, cefotaxime; COX, cefoxitin; CPP, cefpodoxime; CTX/CLA, cefpodoxime/clavulanic acid; CAZ, ceftazidime; CAZ/CLA, ceftazidime/clavulanic acid; ATM, aztreonam; TZP

Figure. . . Phenotype distribution and dendrogram of 78 enterobacteria isolates from broiler chickens at the slaughterhouse, Germany, 2010. The dendrogram was generated by the unweighted pair-group method with arithmetic mean and Pearson correlation; trees were collapsed at a cutoff value of 80%. CEP, cefepime; FEP/CLA, cefepime/clavulanic acid; CTX, cefotaxime; COX, cefoxitin; CPP, cefpodoxime; CTX/CLA, cefpodoxime/clavulanic acid; CAZ, ceftazidime; CAZ/CLA, ceftazidime/clavulanic acid; ATM, aztreonam; TZP, piperacilin/tazobactam; CIP, ciprofloxacin; NAL, nalidixic acid; CHL, chloramphenico; TET, tetracycline; TMP/SXT, trimethoprim/sulfamethoxazole; MER, meropenem; GEN, gentamicin; STR, streptomycin; TEM, CTX-M, and SHV are extended spectrum β-lactamase (ESBL) types. Light gray, non–wild-type according to ESBL; ECOFF, epidemiologic cutoff value (16); dark gray, clinically resistant (12,15); *fc, cecal content; cc, carcass after chilling; †E.c., Escherichia coli; P.m., Proteus mirabilis; En.c., Enterobacter cloacae; ‡AmpC-test (13); gray, positive test; ESBL confirmation test with cloxacillin containing agar; A–G: clades; I–XIV, clusters.

Main Article

References
  1. Paterson  DL, Bonomo  RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18:65786 . DOIPubMedGoogle Scholar
  2. Cantón  R, Coque  TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006;9:46675 and. DOIPubMedGoogle Scholar
  3. Falagas  ME, Karageorgopoulos  DE. Extended-spectrum beta-lactamase–producing organisms. J Hosp Infect. 2009;73:34554 and. DOIPubMedGoogle Scholar
  4. Lavilla  S, Gonzalez-Lopez  JJ, Miro  E, Dominguez  A, Llagostera  M, Bartolome  RM, Dissemination of extended-spectrum beta-lactamase–producing bacteria: the food-borne outbreak lesson. J Antimicrob Chemother. 2008;61:124451 and. DOIPubMedGoogle Scholar
  5. Dierikx  C, van Essen-Zandbergen  A, Veldman  K, Smith  H, Mevius  D. Increased detection of extended spectrum beta-lactamase producing Salmonella enterica and Escherichia coli isolates from poultry. Vet Microbiol. 2010;145:2738 . DOIPubMedGoogle Scholar
  6. Geser  N, Stephan  R, Kuhnert  P, Zbinden  R, Kaeppeli  U, Cernela  N, Fecal carriage of extended-spectrum beta-lactamase–producing Enterobacteriaceae in swine and cattle at slaughter in Switzerland. J Food Prot. 2011;74:4469 and. DOIPubMedGoogle Scholar
  7. Leverstein-van Hall  MA, Dierikx  CM, Cohen Stuart  J, Voets  GM, van den Munckhof  MP, van Essen-Zandbergen  A, Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect. 2011;17:87380 and. DOIPubMedGoogle Scholar
  8. Smet  A, Martel  A, Persoons  D, Dewulf  J, Heyndrickx  M, Catry  B, Diversity of extended-spectrum beta-lactamases and class C beta-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrob Agents Chemother. 2008;52:123843 and. DOIPubMedGoogle Scholar
  9. Costa  D, Vinue  L, Poeta  P, Coelho  AC, Matos  M, Saenz  Y, Prevalence of extended-spectrum beta-lactamase–producing Escherichia coli isolates in faecal samples of broilers. Vet Microbiol. 2009;138:33944 . DOIPubMedGoogle Scholar
  10. Randall  LP, Clouting  C, Horton  RA, Coldham  NG, Wu  G, Clifton-Hadley  FA, Prevalence of Escherichia coli carrying extended-spectrum beta-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J Antimicrob Chemother. 2011;66:8695 and. DOIPubMedGoogle Scholar
  11. Moreno  MA, Teshager  T, Porrero  MA, Garcia  M, Escudero  E, Torres  C, Abundance and phenotypic diversity of Escherichia coli isolates with diminished susceptibility to expanded-spectrum cephalosporins in faeces from healthy food animals after slaughter. Vet Microbiol. 2007;120:3639 and. DOIPubMedGoogle Scholar
  12. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 19th informational supplement. CLSI document M100–S19. Wayne (PA): The Institute; 2009.
  13. Black  JA, Moland  ES, Thomson  KS. AmpC disk test for detection of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal AmpC beta-lactamases. J Clin Microbiol. 2005;43:31103 and. DOIPubMedGoogle Scholar
  14. Thomson  KS. Extended-spectrum-beta-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol. 2010;48:101925 and. DOIPubMedGoogle Scholar
  15. European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoints—bacteria (v 3.1). 2013 2013.02.11 [cited 2013 Feb 15]. http://www.eucast.org/clinical_breakpoints
  16. European Committee on Antimicrobial Susceptibility Testing. Antimicrobial wild type distributions of microorganisms EUCAST version 5.13 [cited 2013 Feb 15]. http://mic.eucast.org/Eucast2/
  17. Rodríguez-Baño  J, Picón  E, Navarro  MD, López-Cerero  L, Pascual  A. ESBL-REIPI Group. Impact of changes in CLSI and EUCAST breakpoints for susceptibility in bloodstream infections due to extended-spectrum beta-lactamase–producing Escherichia coli. Clin Microbiol Infect. 2012;18:894900 and. DOIPubMedGoogle Scholar
  18. Higgins  J, Hohn  C, Hornor  S, Frana  M, Denver  M, Joerger  R. Genotyping of Escherichia coli from environmental and animal samples. J Microbiol Methods. 2007;70:22735 and. DOIPubMedGoogle Scholar
  19. Weill  FX, Lailler  R, Praud  K, Kerouanton  A, Fabre  L, Brisabois  A, Emergence of extended-spectrum-beta-lactamase (CTX-M-9) –producing multiresistant strains of Salmonella enterica serotype Virchow in poultry and humans in France. J Clin Microbiol. 2004;42:576773 and. DOIPubMedGoogle Scholar
  20. Machado  E, Canton  R, Baquero  F, Galan  JC, Rollan  A, Peixe  L, Integron content of extended-spectrum-beta-lactamase–producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob Agents Chemother. 2005;49:18239 and. DOIPubMedGoogle Scholar
  21. Sundsfjord  A, Simonsen  GS, Haldorsen  BC, Haaheim  H, Hjelmevoll  SO, Littauer  P, Genetic methods for detection of antimicrobial resistance. APMIS. 2004;112:81537 and. DOIPubMedGoogle Scholar
  22. Pérez-Pérez  FJ, Hanson  ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40:215362 and. DOIPubMedGoogle Scholar
  23. Martin  LC, Weir  EK, Poppe  C, Reid-Smith  RJ, Boerlin  P. Characterization of blaCMY-2 plasmids in Salmonella and Escherichia coli isolates from food animals in Canada. Appl Environ Microbiol. 2012;78:12857 and. DOIPubMedGoogle Scholar
  24. Park  YS, Adams-Haduch  JM, Rivera  JI, Curry  SR, Harrison  LH, Doi  Y. Escherichia coli producing CMY-2 beta-lactamase in retail chicken, Pittsburgh, Pennsylvania, USA. Emerg Infect Dis. 2012;18:5156 and. DOIPubMedGoogle Scholar
  25. Scharff  RL. Economic burden from health losses due to foodborne illness in the United States. J Food Prot. 2012;75:12331 and. DOIPubMedGoogle Scholar
  26. Marshall  BM, Levy  SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24:71833 and. DOIPubMedGoogle Scholar
  27. Smet  A, Martel  A, Persoons  D, Dewulf  J, Heyndrickx  M, Herman  L, Broad-spectrum beta-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol Rev. 2010;34:295316 . DOIPubMedGoogle Scholar
  28. Manges  AR, Smith  SP, Lau  BJ, Nuval  CJ, Eisenberg  JN, Dietrich  PS, Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case–control study. Foodborne Pathog Dis. 2007;4:41931 . DOIPubMedGoogle Scholar
  29. Johnson  JR, Sannes  MR, Croy  C, Johnston  B, Clabots  C, Kuskowski  MA, Antimicrobial drug–resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002–2004. Emerg Infect Dis. 2007;13:83846 and. DOIPubMedGoogle Scholar
  30. Jakobsen  L, Kurbasic  A, Skjot-Rasmussen  L, Ejrnaes  K, Porsbo  LJ, Pedersen  K, Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog Dis. 2010;7:53747 and. DOIPubMedGoogle Scholar
  31. Machado  E, Coque  TM, Canton  R, Sousa  JC, Peixe  L. Antibiotic resistance integrons and extended-spectrum β-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. J Antimicrob Chemother. 2008;62:296302 and. DOIPubMedGoogle Scholar
  32. Huezo  R, Northcutt  JK, Smith  DP, Fletcher  DL, Ingram  KD. Effect of dry air or immersion chilling on recovery of bacteria from broiler carcasses. J Food Prot. 2007;70:182934 .PubMedGoogle Scholar
  33. Horton  RA, Randall  LP, Snary  EL, Cockrem  H, Lotz  S, Wearing  H, Fecal carriage and shedding density of CTX-M extended-spectrum β-lactamase–producing Escherichia coli in cattle, chickens, and pigs: implications for environmental contamination and food production. Appl Environ Microbiol. 2011;77:37159 and. DOIPubMedGoogle Scholar
  34. Bryan  FL, Doyle  MP. Health risks and consequences of Salmonella and Campylobacter jejuni in raw poultry. J Food Prot. 1995;03:32644.
  35. Reich  F, Atanassova  V, Haunhorst  E, Klein  G. The effects of Campylobacter numbers in caeca on the contamination of broiler carcasses with Campylobacter. Int J Food Microbiol. 2008;127:11620 and. DOIPubMedGoogle Scholar
  36. Asai  T, Masani  K, Sato  C, Hiki  M, Usui  M, Baba  K, Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan. Acta Vet Scand. 2011;53:52 and. DOIPubMedGoogle Scholar
  37. Ewers  C, Antao  EM, Diehl  I, Philipp  HC, Wieler  LH. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl Environ Microbiol. 2009;75:18492 and. DOIPubMedGoogle Scholar
  38. Cortés  P, Blanc  V, Mora  A, Dahbi  G, Blanco  JE, Blanco  M, Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Appl Environ Microbiol. 2010;76:2799805 and. DOIPubMedGoogle Scholar
  39. Coque  TM, Baquero  F, Canton  R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill. 2008;13:1929 .PubMedGoogle Scholar
  40. Peter-Getzlaff  S, Polsfuss  S, Poledica  M, Hombach  M, Giger  J, Bottger  EC, Detection of AmpC beta-lactamase in Escherichia coli: comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol. 2011;49:292432 and. DOIPubMedGoogle Scholar

Main Article

Page created: July 19, 2013
Page updated: July 19, 2013
Page reviewed: July 19, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external