Volume 19, Number 8—August 2013
Research
Extended-Spectrum β-Lactamase– and AmpC-Producing Enterobacteria in Healthy Broiler Chickens, Germany
Figure
References
- Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18:657–86 . DOIPubMedGoogle Scholar
- Cantón R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006;9:466–75 and. DOIPubMedGoogle Scholar
- Falagas ME, Karageorgopoulos DE. Extended-spectrum beta-lactamase–producing organisms. J Hosp Infect. 2009;73:345–54 and. DOIPubMedGoogle Scholar
- Lavilla S, Gonzalez-Lopez JJ, Miro E, Dominguez A, Llagostera M, Bartolome RM, Dissemination of extended-spectrum beta-lactamase–producing bacteria: the food-borne outbreak lesson. J Antimicrob Chemother. 2008;61:1244–51 and. DOIPubMedGoogle Scholar
- Dierikx C, van Essen-Zandbergen A, Veldman K, Smith H, Mevius D. Increased detection of extended spectrum beta-lactamase producing Salmonella enterica and Escherichia coli isolates from poultry. Vet Microbiol. 2010;145:273–8 . DOIPubMedGoogle Scholar
- Geser N, Stephan R, Kuhnert P, Zbinden R, Kaeppeli U, Cernela N, Fecal carriage of extended-spectrum beta-lactamase–producing Enterobacteriaceae in swine and cattle at slaughter in Switzerland. J Food Prot. 2011;74:446–9 and. DOIPubMedGoogle Scholar
- Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect. 2011;17:873–80 and. DOIPubMedGoogle Scholar
- Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Catry B, Diversity of extended-spectrum beta-lactamases and class C beta-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrob Agents Chemother. 2008;52:1238–43 and. DOIPubMedGoogle Scholar
- Costa D, Vinue L, Poeta P, Coelho AC, Matos M, Saenz Y, Prevalence of extended-spectrum beta-lactamase–producing Escherichia coli isolates in faecal samples of broilers. Vet Microbiol. 2009;138:339–44 . DOIPubMedGoogle Scholar
- Randall LP, Clouting C, Horton RA, Coldham NG, Wu G, Clifton-Hadley FA, Prevalence of Escherichia coli carrying extended-spectrum beta-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J Antimicrob Chemother. 2011;66:86–95 and. DOIPubMedGoogle Scholar
- Moreno MA, Teshager T, Porrero MA, Garcia M, Escudero E, Torres C, Abundance and phenotypic diversity of Escherichia coli isolates with diminished susceptibility to expanded-spectrum cephalosporins in faeces from healthy food animals after slaughter. Vet Microbiol. 2007;120:363–9 and. DOIPubMedGoogle Scholar
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 19th informational supplement. CLSI document M100–S19. Wayne (PA): The Institute; 2009.
- Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal AmpC beta-lactamases. J Clin Microbiol. 2005;43:3110–3 and. DOIPubMedGoogle Scholar
- Thomson KS. Extended-spectrum-beta-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol. 2010;48:1019–25 and. DOIPubMedGoogle Scholar
- European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoints—bacteria (v 3.1). 2013 2013.02.11 [cited 2013 Feb 15]. http://www.eucast.org/clinical_breakpoints
- European Committee on Antimicrobial Susceptibility Testing. Antimicrobial wild type distributions of microorganisms EUCAST version 5.13 [cited 2013 Feb 15]. http://mic.eucast.org/Eucast2/
- Rodríguez-Baño J, Picón E, Navarro MD, López-Cerero L, Pascual A. ESBL-REIPI Group. Impact of changes in CLSI and EUCAST breakpoints for susceptibility in bloodstream infections due to extended-spectrum beta-lactamase–producing Escherichia coli. Clin Microbiol Infect. 2012;18:894–900 and. DOIPubMedGoogle Scholar
- Higgins J, Hohn C, Hornor S, Frana M, Denver M, Joerger R. Genotyping of Escherichia coli from environmental and animal samples. J Microbiol Methods. 2007;70:227–35 and. DOIPubMedGoogle Scholar
- Weill FX, Lailler R, Praud K, Kerouanton A, Fabre L, Brisabois A, Emergence of extended-spectrum-beta-lactamase (CTX-M-9) –producing multiresistant strains of Salmonella enterica serotype Virchow in poultry and humans in France. J Clin Microbiol. 2004;42:5767–73 and. DOIPubMedGoogle Scholar
- Machado E, Canton R, Baquero F, Galan JC, Rollan A, Peixe L, Integron content of extended-spectrum-beta-lactamase–producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob Agents Chemother. 2005;49:1823–9 and. DOIPubMedGoogle Scholar
- Sundsfjord A, Simonsen GS, Haldorsen BC, Haaheim H, Hjelmevoll SO, Littauer P, Genetic methods for detection of antimicrobial resistance. APMIS. 2004;112:815–37 and. DOIPubMedGoogle Scholar
- Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40:2153–62 and. DOIPubMedGoogle Scholar
- Martin LC, Weir EK, Poppe C, Reid-Smith RJ, Boerlin P. Characterization of blaCMY-2 plasmids in Salmonella and Escherichia coli isolates from food animals in Canada. Appl Environ Microbiol. 2012;78:1285–7 and. DOIPubMedGoogle Scholar
- Park YS, Adams-Haduch JM, Rivera JI, Curry SR, Harrison LH, Doi Y. Escherichia coli producing CMY-2 beta-lactamase in retail chicken, Pittsburgh, Pennsylvania, USA. Emerg Infect Dis. 2012;18:515–6 and. DOIPubMedGoogle Scholar
- Scharff RL. Economic burden from health losses due to foodborne illness in the United States. J Food Prot. 2012;75:123–31 and. DOIPubMedGoogle Scholar
- Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24:718–33 and. DOIPubMedGoogle Scholar
- Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Herman L, Broad-spectrum beta-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol Rev. 2010;34:295–316 . DOIPubMedGoogle Scholar
- Manges AR, Smith SP, Lau BJ, Nuval CJ, Eisenberg JN, Dietrich PS, Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case–control study. Foodborne Pathog Dis. 2007;4:419–31 . DOIPubMedGoogle Scholar
- Johnson JR, Sannes MR, Croy C, Johnston B, Clabots C, Kuskowski MA, Antimicrobial drug–resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002–2004. Emerg Infect Dis. 2007;13:838–46 and. DOIPubMedGoogle Scholar
- Jakobsen L, Kurbasic A, Skjot-Rasmussen L, Ejrnaes K, Porsbo LJ, Pedersen K, Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog Dis. 2010;7:537–47 and. DOIPubMedGoogle Scholar
- Machado E, Coque TM, Canton R, Sousa JC, Peixe L. Antibiotic resistance integrons and extended-spectrum β-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. J Antimicrob Chemother. 2008;62:296–302 and. DOIPubMedGoogle Scholar
- Huezo R, Northcutt JK, Smith DP, Fletcher DL, Ingram KD. Effect of dry air or immersion chilling on recovery of bacteria from broiler carcasses. J Food Prot. 2007;70:1829–34 .PubMedGoogle Scholar
- Horton RA, Randall LP, Snary EL, Cockrem H, Lotz S, Wearing H, Fecal carriage and shedding density of CTX-M extended-spectrum β-lactamase–producing Escherichia coli in cattle, chickens, and pigs: implications for environmental contamination and food production. Appl Environ Microbiol. 2011;77:3715–9 and. DOIPubMedGoogle Scholar
- Bryan FL, Doyle MP. Health risks and consequences of Salmonella and Campylobacter jejuni in raw poultry. J Food Prot. 1995;03:326–44.
- Reich F, Atanassova V, Haunhorst E, Klein G. The effects of Campylobacter numbers in caeca on the contamination of broiler carcasses with Campylobacter. Int J Food Microbiol. 2008;127:116–20 and. DOIPubMedGoogle Scholar
- Asai T, Masani K, Sato C, Hiki M, Usui M, Baba K, Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan. Acta Vet Scand. 2011;53:52 and. DOIPubMedGoogle Scholar
- Ewers C, Antao EM, Diehl I, Philipp HC, Wieler LH. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl Environ Microbiol. 2009;75:184–92 and. DOIPubMedGoogle Scholar
- Cortés P, Blanc V, Mora A, Dahbi G, Blanco JE, Blanco M, Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Appl Environ Microbiol. 2010;76:2799–805 and. DOIPubMedGoogle Scholar
- Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill. 2008;13:19–29 .PubMedGoogle Scholar
- Peter-Getzlaff S, Polsfuss S, Poledica M, Hombach M, Giger J, Bottger EC, Detection of AmpC beta-lactamase in Escherichia coli: comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol. 2011;49:2924–32 and. DOIPubMedGoogle Scholar
Page created: July 19, 2013
Page updated: July 19, 2013
Page reviewed: July 19, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.