Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 1—January 2014
Research

Genomic Epidemiology of Vibrio cholerae O1 Associated with Floods, Pakistan, 2010

Muhammad Ali Shah1, Ankur Mutreja1, Nicholas Thomson1, Stephen Baker, Julian Parkhill, Gordon Dougan, Habib Bokhari, and Brendan W. WrenComments to Author 
Author affiliations: COMSATS Institute of Information Technology, Islamabad, Pakistan (M.A. Shah, H. Bokhari); Wellcome Trust Sanger Institute, Cambridge, UK (A. Mutreja, N. Thomson, J. Parkhill, G. Dougan); Oxford University Clinical Research Unit, Ho Chi Mihn City, Vietnam (S. Baker); London School of Hygiene and Tropical Medicine, London, UK (M.A. Shah, S. Baker, B.W. Wren)

Main Article

Figure 3

A single-nucleotide polymorphism–based maximum-likelihood phylogeny showing the position of Vibrio cholerae O1 El Tor from Pakistan in wave 3 of the seventh-pandemic lineage relative to the Haiti and Nepal strains of Hendriksen et al. (23). Waves 1, 2, and 3 are labeled in blue, green, and red respectively. Scale bar indicates substitution per variable site.

Figure 3. . A single-nucleotide polymorphism–based maximum-likelihood phylogeny showing the position of Vibrio cholerae O1 El Tor from Pakistan in wave 3 of the seventh-pandemic lineage relative to the Haiti and Nepal strains of Hendriksen et al. (23). Waves 1, 2, and 3 are labeled in blue, green, and red respectively. Scale bar indicates substitutions per variable site.

Main Article

References
  1. Ahmed  K, Shakoori  AR. Vibrio cholerae El Tor, Ogawa O1, as the main aetiological agent of two major outbreaks of gastroenteritis in northern Pakistan. J Health Popul Nutr. 2002;20:967 .PubMedGoogle Scholar
  2. Enzensberger  R, Besier  S, Baumgartner  N, Brade  V. Mixed diarrhoeal infection caused by Vibrio cholerae and several other enteric pathogens in a 4-year-old child returning to Germany from Pakistan. Scand J Infect Dis. 2005;37:735 . DOIPubMedGoogle Scholar
  3. Jabeen  K, Zafar  A, Hasan  R. Increased isolation of Vibrio cholerae O1 serotype Inaba over serotype Ogawa in Pakistan. East Mediterr Health J. 2008;14:56470 .PubMedGoogle Scholar
  4. Singapore Red Cross. Pakistan floods: the deluge of disaster. Facts & figures as of 15 September 2010 [cited 2010 Oct 18]. http://reliefweb.int/report/pakistan/pakistan-floodsthe-deluge-disaster-facts-figures-15-september-2010
  5. World Health Organization. Cholera, 2010. Wkly Epidemiol Rec. 2011;86:32539 .PubMedGoogle Scholar
  6. Sack  DA, Sack  RB, Nair  GB, Siddique  AK. Cholera. Lancet. 2004;363:22333 . DOIPubMedGoogle Scholar
  7. Ramamurthy  T, Garg  S, Sharma  R, Bhattacharya  SK, Nair  GB, Shimada  T, Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 1993;341:7034. DOIPubMedGoogle Scholar
  8. Mutreja  A, Kim  DW, Thomson  NR, Connor  TR, Lee  JH, Kariuki  S, Evidence for several waves of global transmission in the seventh cholera pandemic. Nature. 2011;477:4625. DOIPubMedGoogle Scholar
  9. Waldor  MK, Mekalanos  JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996;272:19104. DOIPubMedGoogle Scholar
  10. Safa  A, Nair  GB, Kong  RY. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol. 2010;18:4654. DOIPubMedGoogle Scholar
  11. Nandi  B, Nandy  RK, Mukhopadhyay  S, Nair  GB, Shimada  T, Ghose  AC. Rapid method for species-specific identification of Vibrio cholerae using primers argeted to the gene of outer membrane protein OmpW. J Clin Microbiol. 2000;38:414551 .PubMedGoogle Scholar
  12. Hoshino  K, Yamasaki  S, Mukhopadhyay  AK, Chakraborty  S, Basu  A, Bhattacharya  SK, Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. FEMS Immunol Med Microbiol. 1998;20:2017. DOIPubMedGoogle Scholar
  13. Winn  WC, Allen  S, Janda  W, Koneman  E, Procop  G, Schreckenberger  P. Curved gram-negative bacilli and oxidase-positive fermenters: Campylobacteraceae and Vibrionaceae. In: Koneman EW, editor. Koneman’s color atlas and textbook of diagnostic microbiology. Washington (DC): Lippincott Williams & Wilkins; 2005. p. 408–28.
  14. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: nineteenth informational supplement (M100-S19). Wayne (PA): The Institute; 2009.
  15. Harris  SR, Feil  EJ, Holden  MT, Quail  MA, Nickerson  EK, Chantratita  N, Evolution of MRSA during hospital transmission and intercontinental spread. Science. 2010;327:46974. DOIPubMedGoogle Scholar
  16. Croucher  NJ, Harris  SR, Fraser  C, Quail  MA, Burton  J, van der Linden  M, Rapid pneumococcal evolution in response to clinical interventions. Science. 2011;331:4304. DOIPubMedGoogle Scholar
  17. Stamatakis  A. RAxML-VI-HPC: maximum likelihood–based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:268890. DOIPubMedGoogle Scholar
  18. Yang  Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:158691. DOIPubMedGoogle Scholar
  19. Zerbino  DR, Birney  E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:8219. DOIPubMedGoogle Scholar
  20. Assefa  S, Keane  TM, Otto  TD, Newbold  C, Berriman  M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics. 2009;25:19689. DOIPubMedGoogle Scholar
  21. Altschul  SF, Gish  W, Miller  W, Myers  EW, Lipman  DJ. Basic local alignment search tool. J Mol Biol. 1990;215:40310 .PubMedGoogle Scholar
  22. Carver  T, Berriman  M, Tivey  A, Patel  C, Böhme  U, Barrell  BG, Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics. 2008;24:26726 . DOIPubMedGoogle Scholar
  23. Hendriksen  RS, Price  LB, Schupp  JM, Gillece  JD, Kaas  RS, Engelthaler  DM, Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. MBio. 2011;2:e0015711. DOIPubMedGoogle Scholar
  24. Szabady  RL, Yanta  JH, Halladin  DK, Schofield  MJ, Welch  RA. TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology. 2011;157:51625 . DOIPubMedGoogle Scholar
  25. Reimer  AR, Van Domselaar  G, Stroika  S, Walker  M, Kent  H, Tarr  C, Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa. Emerg Infect Dis. 2011;17:211321 . DOIPubMedGoogle Scholar
  26. Pang  B, Yan  M, Cui  Z, Ye  X, Diao  B, Ren  Y, Genetic diversity of toxigenic and nontoxigenic Vibrio cholerae serogroups O1 and O139 revealed by array-based comparative genomic hybridization. J Bacteriol. 2007;189:483749. DOIPubMedGoogle Scholar
  27. Hankins  JV, Madsen  JA, Giles  DK, Brodbelt  JS, Trent  MS. Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in gram-positive and gram-negative bacteria. Proc Natl Acad Sci U S A. 2012;109:87227. DOIPubMedGoogle Scholar
  28. Saha  D, Khan  WA, Karim  MM, Chowdhury  HR, Salam  MA, Bennish  ML. Single-dose ciprofloxacin versus 12-dose erythromycin for childhood cholera: a randomised controlled trial. Lancet. 2005;366:108593. DOIPubMedGoogle Scholar
  29. Butler  D. Cholera tightens grip on Haiti. Nature. 2010;468:4834. DOIPubMedGoogle Scholar
  30. Kondo  H, Seo  N, Yasuda  T, Hasizume  M, Koido  Y, Ninomiya  N, Post–flood-infectious diseases in Mozambique. Prehosp Disaster Med. 2002;17:12633 .PubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: January 03, 2014
Page updated: January 03, 2014
Page reviewed: January 03, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external