Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 1—January 2014
Dispatch

Fatal Metacestode Infection in Bornean Orangutan Caused by Unknown Versteria Species

Tony L. GoldbergComments to Author , Annette Gendron-Fitzpatrick, Kathleen M. Deering, Roberta S. Wallace, Victoria L. Clyde, Michael Lauck, Gail E. Rosen, Andrew J. Bennett, Ellis C. Greiner, and David H. O’Connor
Author affiliations: University of Wisconsin, Madison Wisconsin, USA (T.L. Goldberg, A. Gendron-Fitzpatrick, K.M. Deering, G.E. Rosen, A.J. Bennett, D.H. O’Connor); Milwaukee County Zoo, Milwaukee, Wisconsin, USA (A. Gendron-Fitzpatrick, K.M. Deering, R.S. Wallace, V. L. Clyde); University of Florida, Gainesville, Florida, USA (E.C. Greiner); Wisconsin National Primate Research Center, Madison (T.L. Goldberg, D.H. O’Connor).

Main Article

Figure 2

Phylogenetic trees of the Taeniidae, including newly generated sequences derived from tissues of a fatally infected Bornean orangutan. Trees were constructed from DNA sequence alignments of 12s rRNA (A) and concatenated cox1/nad1 (B) sequences from the orangutan (Versteria sp.; bold; accession nos. KF303339–303341) and representative Echinococcus, Hydatigera, Taenia, and Versteria sequences from GenBank (see Table). The maximum likelihood method was used, with the likeliest model of molecular ev

Figure 2. . Phylogenetic trees of the Taeniidae, including newly generated sequences derived from tissues of a fatally infected Bornean orangutan. Trees were constructed from DNA sequence alignments of 12s rRNA (A) and concatenated cox1/nad1 (B) sequences from the orangutan (Versteria sp.; bold; accession nos. KF303339–303341) and representative Echinococcus, Hydatigera, Taenia, and Versteria sequences from GenBank (see Table). The maximum likelihood method was used, with the likeliest model of molecular evolution chosen for both datasets by using MEGA5.2 software (6). Models of molecular evolution and tree likelihood values are HKY+G, -lnL = 2279.42 for 12s rRNA, and GTR+G+I, -lnL = 11582.71 for cox1/nad1. Numbers next to branches indicate bootstrap values (%), estimated from 1,000 resamplings of the data (only bootstrap values ≥50% are shown). Scale bar indicates nucleotide substitutions per site.

Main Article

References
  1. Nakao  M, Lavikainen  A, Iwaki  T, Haukisalmi  V, Konyaev  S, Oku  Y, Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria. Int J Parasitol. 2013;43:42737. DOIPubMedGoogle Scholar
  2. Lauck  M, Hyeroba  D, Tumukunde  A, Weny  G, Lank  SM, Chapman  CA, Novel, divergent simian hemorrhagic fever viruses in a wild Ugandan red colobus monkey discovered using direct pyrosequencing. PLoS ONE. 2011;6:e19056. DOIPubMedGoogle Scholar
  3. Locke  DP, Hillier  LW, Warren  WC, Worley  KC, Nazareth  LV, Muzny  DM, Comparative and demographic analysis of orang-utan genomes. Nature. 2011;469:52933. DOIPubMedGoogle Scholar
  4. Tsai  IJ, Zarowiecki  M, Holroyd  N, Garciarrubio  A, Sanchez-Flores  A, Brooks  KL, The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 2013;496:5763 . DOIPubMedGoogle Scholar
  5. Bowles  J, Blair  D, McManus  DP. A molecular phylogeny of the genus Echinococcus. Parasitology. 1995;110:31728. DOIPubMedGoogle Scholar
  6. Tamura  K, Peterson  D, Peterson  N, Stecher  G, Nei  M, Kumar  S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:27319. DOIPubMedGoogle Scholar
  7. Lavikainen  A, Haukisalmi  V, Lehtinen  MJ, Henttonen  H, Oksanen  A, Meri  S. A phylogeny of members of the family Taeniidae based on the mitochondrial cox1 and nad1 gene data. Parasitology. 2008;135:145767. DOIPubMedGoogle Scholar
  8. Langham  RF, Rausch  RL, Williams  JF. Cysticerci of Taenia mustelae in the fox squirrel. J Wildl Dis. 1990;26:2956. DOIPubMedGoogle Scholar
  9. Kinsella  JM. Comparison of helminth parasites of the cotton rat, Sigmodon hispidus, from several habitats in Florida. Am Mus Novit. 1974;2540:112.
  10. Baer  JG, Fain  A. Cestodes nouveaux du Congo Belge. Acta Trop. 1951;8:5963.
  11. Loos-Frank  B. An up-date of Verster's (1969) 'Taxonomic revision of the genus Taenia Linnaeus' (Cestoda) in table format. Syst Parasitol. 2000;45:15584. DOIPubMedGoogle Scholar
  12. Lipkin  WI, Firth  C. Viral surveillance and discovery. Curr Opin Virol. 2013;3:199–204.
  13. Whitfield  PJ, Evans  NA. Parthenogenesis and asexual multiplication among parasitic platyhelminths. Parasitology. 1983;86:12160. DOIPubMedGoogle Scholar
  14. Mackinnon  J. The behaviour and ecology of wild orang-utans (Pongo pygmaeus). Anim Behav. 1974;22:374. DOIGoogle Scholar

Main Article

Page created: January 03, 2014
Page updated: January 03, 2014
Page reviewed: January 03, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external