Volume 20, Number 12—December 2014
Dispatch
Equine Influenza A(H3N8) Virus Isolated from Bactrian Camel, Mongolia
Figure 2

Figure 2. Evolutionary relationships of 155 full-length hemagglutinin sequences from equine A(H3N8)viruses collected globally and A/camel/Mongolia/335/2012 (arrow). The 2 clades associated with most recent equine influenza A(H3N8) viruses, Florida clade 1 and Florida clade 2, are denoted as FC1 and FC2, respectively, and with nomenclature adopted previously (13). The maximum-likelihood tree is midpoint rooted for clarity, and all branch lengths are drawn to scale. High (>70) bootstrap values are provided for key nodes. Hemagglutinin sequences containing a 2aa insertion are identified with a solid black circle. Scale bar indicates nucleotide substitutions per site.
References
- Waddell GH, Teigland MB, Sigel MM. A new influenza virus associated with equine respiratory disease. J Am Vet Med Assoc. 1963;143:587–90 .PubMedGoogle Scholar
- Crawford PC, Dubovi EJ, Castleman WL, Stephenson I, Gibbs EP, Chen L, Transmission of equine influenza virus to dogs. Science. 2005;310:482–5. DOIPubMedGoogle Scholar
- Hayward JJ, Dubovi EJ, Scarlett JM, Janeczko S, Holmes EC, Parrish CR. Microevolution of canine influenza virus in shelters and its molecular epidemiology in the United States. J Virol. 2010;84:12636–45. DOIPubMedGoogle Scholar
- Yondon M, Heil GL, Burks JP, Zayat B, Waltzek TB, Jamiyan BO, Isolation and characterization of H3N8 equine influenza A virus associated with the 2011 epizootic in Mongolia. Influenza Other Respir Viruses. 2013;7:659–65.
- Anchlan D, Ludwig S, Nymadawa P, Mendsaikhan J, Scholtissek C. Previous H1N1 influenza A viruses circulating in the Mongolian population. Arch Virol. 1996;141:1553–69. DOIPubMedGoogle Scholar
- Yamnikova SS, Mandler J, Bekh-Ochir ZH, Dachtzeren P, Ludwig S, Lvov DK, A reassortant H1N1 influenza A virus caused fatal epizootics among camels in Mongolia. Virology. 1993;197:558–63. DOIPubMedGoogle Scholar
- Caffar Elamin MA, Kheir SA. Detection of influenza antibody in animal sera from Kassala region, Sudan, by agar gel diffusion test. Rev Elev Med Vet Pays Trop. 1985;38:127–9 .PubMedGoogle Scholar
- Olaleye OD, Baba SS, Omolabu SA. Preliminary survey for antibodies against respiratory viruses among slaughter camels (Camelus dromedarius) in north-eastern Nigeria [in French]. Revue Scientifique et Technique de l'OIE. 1989;8:779–83.
- Haagmans BL, Al Dhahiry SH, Reusken CB, Raj VS, Galiano M, Myers R, Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis. 2014;14:140–5. DOIPubMedGoogle Scholar
- World Health Organization. WHO information for molecular diagnosis of influenza virus in humans—update. 2011 [cited 2013 Jun 10]. http://www.who.int/influenza/resources/documents/molecular_diagnosis_influenza_virus_humans_update_201108.pdf
- Zhou B, Donnelly ME, Scholes DT, St George K, Hatta M, Kawaoka Y, Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and swine origin human influenza A viruses. J Virol. 2009;83:10309–13. DOIPubMedGoogle Scholar
- Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90. DOIPubMedGoogle Scholar
- Song D, Moon HJ, An DJ, Jeoung HY, Kim H, Yeom MJ, A novel reassortant canine H3N1 influenza virus between pandemic H1N1 and canine H3N2 influenza viruses in Korea. J Gen Virol. 2012;93:551–4. DOIPubMedGoogle Scholar
- Anthony SJ, St Leger JA, Pugliares K, Ip HS, Chan JM, Carpenter ZW, Emergence of fatal avian influenza in New England harbor seals. MBio. 2012;3:e00166–12. DOIPubMedGoogle Scholar