Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 12—December 2014
Dispatch

Equine Influenza A(H3N8) Virus Isolated from Bactrian Camel, Mongolia

Myagmarsukh Yondon, Batsukh Zayat, Martha I. Nelson, Gary L. Heil, Benjamin D. Anderson, Xudong Lin, Rebecca A. Halpin, Pamela McKenzie, Sarah K. White, David Wentworth, and Gregory C. GrayComments to Author 
Author affiliations: Institute of Veterinary Medicine, Ulaanbaatar, Mongolia (M. Yondon, B. Zayat); National Institutes of Health, Bethesda, Maryland, USA (M.I. Nelson); University of Florida, Gainesville, Florida, USA (G.L. Heil, B.D. Anderson, S.K. White, G.C. Gray); J. Craig Venter Institute, Rockville, Maryland, USA (X. Lin, R.A. Halpin, D.E. Wentworth); St. Jude Children’s Research Hospital, Memphis, Tennessee, USA (P.P. McKenzie)

Main Article

Figure 2

Evolutionary relationships of 155 full-length hemagglutinin sequences from equine A(H3N8)viruses collected globally and A/camel/Mongolia/335/2012 (arrow). The 2 clades associated with most recent equine influenza A(H3N8) viruses, Florida clade 1 and Florida clade 2, are denoted as FC1 and FC2, respectively, and with nomenclature adopted previously (13). The maximum-likelihood tree is midpoint rooted for clarity, and all branch lengths are drawn to scale. High (>70) bootstrap values are provid

Figure 2. Evolutionary relationships of 155 full-length hemagglutinin sequences from equine A(H3N8)viruses collected globally and A/camel/Mongolia/335/2012 (arrow). The 2 clades associated with most recent equine influenza A(H3N8) viruses, Florida clade 1 and Florida clade 2, are denoted as FC1 and FC2, respectively, and with nomenclature adopted previously (13). The maximum-likelihood tree is midpoint rooted for clarity, and all branch lengths are drawn to scale. High (>70) bootstrap values are provided for key nodes. Hemagglutinin sequences containing a 2aa insertion are identified with a solid black circle. Scale bar indicates nucleotide substitutions per site.

Main Article

References
  1. Waddell  GH, Teigland  MB, Sigel  MM. A new influenza virus associated with equine respiratory disease. J Am Vet Med Assoc. 1963;143:58790 .PubMedGoogle Scholar
  2. Crawford  PC, Dubovi  EJ, Castleman  WL, Stephenson  I, Gibbs  EP, Chen  L, Transmission of equine influenza virus to dogs. Science. 2005;310:4825. DOIPubMedGoogle Scholar
  3. Hayward  JJ, Dubovi  EJ, Scarlett  JM, Janeczko  S, Holmes  EC, Parrish  CR. Microevolution of canine influenza virus in shelters and its molecular epidemiology in the United States. J Virol. 2010;84:1263645. DOIPubMedGoogle Scholar
  4. Yondon  M, Heil  GL, Burks  JP, Zayat  B, Waltzek  TB, Jamiyan  BO, Isolation and characterization of H3N8 equine influenza A virus associated with the 2011 epizootic in Mongolia. Influenza Other Respir Viruses. 2013;7:659–65.
  5. Anchlan  D, Ludwig  S, Nymadawa  P, Mendsaikhan  J, Scholtissek  C. Previous H1N1 influenza A viruses circulating in the Mongolian population. Arch Virol. 1996;141:155369. DOIPubMedGoogle Scholar
  6. Yamnikova  SS, Mandler  J, Bekh-Ochir  ZH, Dachtzeren  P, Ludwig  S, Lvov  DK, A reassortant H1N1 influenza A virus caused fatal epizootics among camels in Mongolia. Virology. 1993;197:55863. DOIPubMedGoogle Scholar
  7. Caffar Elamin  MA, Kheir  SA. Detection of influenza antibody in animal sera from Kassala region, Sudan, by agar gel diffusion test. Rev Elev Med Vet Pays Trop. 1985;38:1279 .PubMedGoogle Scholar
  8. Olaleye  OD, Baba  SS, Omolabu  SA. Preliminary survey for antibodies against respiratory viruses among slaughter camels (Camelus dromedarius) in north-eastern Nigeria [in French]. Revue Scientifique et Technique de l'OIE. 1989;8:779–83.
  9. Haagmans  BL, Al Dhahiry  SH, Reusken  CB, Raj  VS, Galiano  M, Myers  R, Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis. 2014;14:1405. DOIPubMedGoogle Scholar
  10. World Health Organization. WHO information for molecular diagnosis of influenza virus in humans—update. 2011 [cited 2013 Jun 10]. http://www.who.int/influenza/resources/documents/molecular_diagnosis_influenza_virus_humans_update_201108.pdf
  11. Zhou  B, Donnelly  ME, Scholes  DT, St George  K, Hatta  M, Kawaoka  Y, Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and swine origin human influenza A viruses. J Virol. 2009;83:1030913. DOIPubMedGoogle Scholar
  12. Stamatakis  A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:268890. DOIPubMedGoogle Scholar
  13. Murcia  PR, Wood  JL, Holmes  EC. Genome-scale evolution and phylodynamics of equine H3N8 influenza A virus. J Virol. 2011;85:531222. DOIPubMedGoogle Scholar
  14. Song  D, Moon  HJ, An  DJ, Jeoung  HY, Kim  H, Yeom  MJ, A novel reassortant canine H3N1 influenza virus between pandemic H1N1 and canine H3N2 influenza viruses in Korea. J Gen Virol. 2012;93:5514. DOIPubMedGoogle Scholar
  15. Anthony  SJ, St Leger  JA, Pugliares  K, Ip  HS, Chan  JM, Carpenter  ZW, Emergence of fatal avian influenza in New England harbor seals. MBio. 2012;3:e0016612. DOIPubMedGoogle Scholar

Main Article

Page created: November 19, 2014
Page updated: November 19, 2014
Page reviewed: November 19, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external