Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 2—February 2014
Research

Genomic Variability of Monkeypox Virus among Humans, Democratic Republic of the Congo

Jeffrey R. Kugelman1, Sara C. Johnston1, Prime M. Mulembakani, Neville Kisalu, Michael S. Lee, Galina Koroleva, Sarah E. McCarthy, Marie C. Gestole, Nathan D. Wolfe, Joseph N. Fair, Bradley S. Schneider, Linda L. Wright, John Huggins, Chris A. Whitehouse, Emile Okitolonda Wemakoy, Jean Jacques Muyembe-Tamfum, Lisa E. Hensley, Gustavo F. Palacios2Comments to Author , and Anne W. Rimoin2Comments to Author 
Author affiliations: United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA (J.R. Kugelman, S.C. Johnston, M.S. Lee, G. Koroleva, S.E. McCarthy, M.C. Gestole, J. Huggins, C.A. Whitehouse, G.F. Palacios); Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo (P.M. Mulembakani, E.O. Wemakoy); University of California, Los Angeles, California, USA (N. Kisalu, A.W. Rimoin); Global Viral Forecasting (now known as Metabiota), San Francisco, California, USA (N.D. Wolfe, J.N, Fair, B.S. Schneider); The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA (L.L. Wright); National Institute of Biomedical Research, Kinshasa (J.J. Muyembe-Tamfum); US Food and Drug Administration, Silver Spring, Maryland, USA (L.E. Hensley)

Main Article

Figure 1

Phylogenetic analysis of whole-genome direct sequencing. Evolutionary relationships between sequenced samples and archived monkeypox virus (MPXV) sequences were determined for the central coding region sequence (MPXV nucleotide positions ≈56000–120000). A cladogram representing the topology of an unrooted Bayesian phylogenetic reconstruction is shown for samples identified by sample number and/or GenBank accession number. The Central and Western African clades and the 4 distinct lineages are ind

Figure 1. Phylogenetic analysis of whole-genome direct sequencingEvolutionary relationships between sequenced samples and archived monkeypox virus (MPXV) sequences were determined for the central coding region sequence (MPXV nucleotide positions ≈56000–120000)A cladogram representing the topology of an unrooted Bayesian phylogenetic reconstruction is shown for samples identified by sample number and/or GenBank accession numberThe Central and Western African clades and the 4 distinct lineages are indicatedConfidence values for branching events were computed by Markov chain Monte Carlo convergenceNumbers at nodes represent Bayesian posterior probabilities computed by using MrBayes 3.1.2 (30).

Main Article

References
  1. Moss  B. Poxviridae: The viruses and their replication. In: Knipe DM, Howley PM. Field's Virology, 4th ed. Philadelphia: Lippincott-Raven 2001. pp. 2849–83.
  2. Chen  N, Li  G, Liszewski  MK, Atkinson  JP, Jahrling  PB, Feng  Z, Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology. 2005;340:4663. DOIPubMedGoogle Scholar
  3. Emerson  GL, Li  Y, Frace  MA, Olsen-Rasmussen  MA, Khristova  ML, Govil  D, The phylogenetics and ecology of the orthopoxviruses endemic to North America. PLoS ONE. 2009;4:e7666. DOIPubMedGoogle Scholar
  4. Esposito  JJ, Sammons  SA, Frace  AM, Osborne  JD, Olsen-Rasmussen  M, Zhang  M, Genome sequence diversity and clues to the evolution of variola (smallpox) virus. Science. 2006;313:80712. DOIPubMedGoogle Scholar
  5. Gubser  C, Hue  S, Kellam  P, Smith  GL. Poxvirus genomes: a phylogenetic analysis. J Gen Virol. 2004;85:10517 and. DOIPubMedGoogle Scholar
  6. Werden  SJ, Rahman  MM, McFadden  G. Poxvirus host range genes. Adv Virus Res. 2008;71:13571. DOIPubMedGoogle Scholar
  7. Hendrickson  RC, Wang  C, Hatcher  EL, Lefkowitz  EJ. Orthopoxvirus genome evolution: the role of gene loss. Viruses. 2010;2:193367. DOIPubMedGoogle Scholar
  8. Carroll  DS, Emerson  GL, Li  Y, Sammons  S, Olson  V, Frace  M, Chasing Jenner's vaccine: revisiting cowpox virus classification. PLoS ONE. 2011;6:e23086. DOIPubMedGoogle Scholar
  9. Essbauer  S, Pfeffer  M, Meyer  H. Zoonotic poxviruses. Vet Microbiol. 2010;140:22936. DOIPubMedGoogle Scholar
  10. Hansen  H, Okeke  MI, Nilssen  O, Traavik  T. Comparison and phylogenetic analysis of cowpox viruses isolated from cats and humans in Fennoscandia. Arch Virol. 2009;154:1293302. DOIPubMedGoogle Scholar
  11. Henderson  DA, Inglesby  TV, Bartlett  JG, Ascher  MS, Eitzen  E, Jahrling  PB, Smallpox as a biological weapon: medical and public health management. Working Group on Civilian Biodefense. JAMA. 1999;281:212737. DOIPubMedGoogle Scholar
  12. Hutin  YJ, Williams  RJ, Malfait  P, Pebody  R, Loparev  VN, Ropp  SL, Outbreak of human monkeypox, Democratic Republic of Congo, 1996 to 1997. Emerg Infect Dis. 2001;7:4348 .PubMedGoogle Scholar
  13. Jezek  Z, Grab  B, Paluku  KM, Szczeniowski  MV. Human monkeypox: disease pattern, incidence and attack rates in a rural area of northern Zaire. Trop Geogr Med. 1988;40:7383 .PubMedGoogle Scholar
  14. Jezek  Z, Grab  B, Szczeniowski  M, Paluku  KM, Mutombo  M. Clinico-epidemiological features of monkeypox patients with an animal or human source of infection. Bull World Health Organ. 1988;66:45964 .PubMedGoogle Scholar
  15. Meyer  H, Perrichot  M, Stemmler  M, Emmerich  P, Schmitz  H, Varaine  F, Outbreaks of disease suspected of being due to human monkeypox virus infection in the Democratic Republic of Congo in 2001. J Clin Microbiol. 2002;40:291921. DOIPubMedGoogle Scholar
  16. Fuller  T, Thomassen  HA, Mulembakani  PM, Johnston  SC, Lloyd-Smith  JO, Kisalu  NK, Using remote sensing to map the risk of human monkeypox virus in the Congo Basin. EcoHealth. 2011;8:1425. DOIPubMedGoogle Scholar
  17. Khodakevich  L, Jezek  Z, Messinger  D. Monkeypox virus: ecology and public health significance. Bull World Health Organ. 1988;66:74752 .PubMedGoogle Scholar
  18. Khodakevich  L, Jezek  Z, Kinzanzka  K. Isolation of monkeypox virus from wild squirrel infected in nature. Lancet. 1986;1:989. DOIPubMedGoogle Scholar
  19. Khodakevich  L, Szczeniowski  M. Manbu-ma-Disuse, Jezek Z, Marennikova S, Nakano J, et al. The role of squirrels in sustaining monkeypox virus transmission. Trop Geogr Med. 1987;39:115–22.
  20. Rimoin  AW, Mulembakani  PM, Johnston  SC, Lloyd Smith  JO, Kisalu  NK, Kinkela  TL, Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc Natl Acad Sci U S A. 2010;107:162627. DOIPubMedGoogle Scholar
  21. Learned  LA, Reynolds  MG, Wassa  DW, Li  Y, Olson  VA, Karem  K, Extended interhuman transmission of monkeypox in a hospital community in the Republic of the Congo, 2003. Am J Trop Med Hyg. 2005;73:42834 .PubMedGoogle Scholar
  22. Reed  KD, Melski  JW, Graham  MB, Regnery  RL, Sotir  MJ, Wegner  MV, The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med. 2004;350:34250. DOIPubMedGoogle Scholar
  23. Hess  M, Sczyrba  A, Egan  R, Kim  TW, Chokhawala  H, Schroth  G, Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011;331:4637. DOIPubMedGoogle Scholar
  24. Bentley  S. Taming the next-gen beast. Nat Rev Microbiol. 2010;8:161. DOIPubMedGoogle Scholar
  25. Elde  NC, Child  SJ, Eickbush  MT, Kitzman  JO, Rogers  KS, Shendure  J, Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell. 2012;150:83141. DOIPubMedGoogle Scholar
  26. Shchelkunov  SN, Totmenin  AV, Babkin  IV, Safronov  PF, Ryazankina  OI, Petrov  NA, Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett. 2001;509:6670. DOIPubMedGoogle Scholar
  27. Bahar  MW, Graham  SC, Chen  RA, Cooray  S, Smith  GL, Stuart  DI, How vaccinia virus has evolved to subvert the host immune response. J Struct Biol. 2011;175:12734. DOIPubMedGoogle Scholar
  28. Kulesh  DA, Baker  RO, Loveless  BM, Norwood  D, Zwiers  SH, Mucker  E, Smallpox and pan-orthopox virus detection by real-time 3′-minor groove binder TaqMan assays on the Roche LightCycler and the Cepheid Smart Cycler platforms. J Clin Microbiol. 2004;42:6019. DOIPubMedGoogle Scholar
  29. Kulesh  DA, Loveless  BM, Norwood  D, Garrison  J, Whitehouse  CA, Hartmann  C, Monkeypox virus detection in rodents using real-time 3′-minor groove binder TaqMan assays on the Roche LightCycler. Lab Invest. 2004;84:12008. DOIPubMedGoogle Scholar
  30. Ronquist  F, Huelsenbeck  JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:15724. DOIPubMedGoogle Scholar
  31. Campbell  JA, Trossman  DS, Yokoyama  WM, Carayannopoulos  LN. Zoonotic orthopoxviruses encode a high-affinity antagonist of NKG2D. J Exp Med. 2007;204:13117. DOIPubMedGoogle Scholar
  32. Shchelkunov  SN, Totmenin  AV, Safronov  PF, Mikheev  MV, Gutorov  VV, Ryazankina  OI, Analysis of the monkeypox virus genome. Virology. 2002;297:17294 and. DOIPubMedGoogle Scholar
  33. Wittek  R, Moss  B. Tandem repeats within the inverted terminal repetition of vaccinia virus DNA. Cell. 1980;21:27784. DOIPubMedGoogle Scholar
  34. Gubser  C, Smith  GL. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol. 2002;83:85572 .PubMedGoogle Scholar
  35. Yang  Z, Moss  B. Interaction of the vaccinia virus RNA polymerase-associated 94-kilodalton protein with the early transcription factor. J Virol. 2009;83:1201826. DOIPubMedGoogle Scholar
  36. Christen  LA, Piacente  S, Mohamed  MR, Niles  EG. Vaccinia virus early gene transcription termination factors VTF and Rap94 interact with the U9 termination motif in the nascent RNA in a transcription ternary complex. Virology. 2008;376:22535. DOIPubMedGoogle Scholar
  37. Nakazawa  Y, Emerson  GL, Carroll  DS, Zhao  H, Li  Y, Reynolds  MG, Phylogenetic and ecologic perspectives of a monkeypox outbreak, southern Sudan, 2005. Emerg Infect Dis. 2013;19:23745. DOIPubMedGoogle Scholar
  38. Shchelkunov  SN. How long ago did smallpox virus emerge? Arch Virol. 2009;154:186571. DOIPubMedGoogle Scholar
  39. Tesh  RB, Watts  DM, Sbrana  E, Siirin  M, Popov  VL, Xiao  SY. Experimental infection of ground squirrels (Spermophilus tridecemlineatus) with monkeypox virus. Emerg Infect Dis. 2004;10:15637. DOIPubMedGoogle Scholar
  40. Reynolds  MG, Carroll  DS, Karem  KL. Factors affecting the likelihood of monkeypox's emergence and spread in the post-smallpox era. Curr Opin Virol. 2012;2:335–4.

Main Article

1These authors are co–first authors.

2These authors contributed equally to this work.

Page created: January 17, 2014
Page updated: January 17, 2014
Page reviewed: January 17, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external