Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 5—May 2014
Perspective

Bat Flight and Zoonotic Viruses

Thomas J. O’SheaComments to Author , Paul M. Cryan, Andrew A. Cunningham, Anthony R. Fooks, David T.S. Hayman, Angela D. Luis, Alison J. Peel, Raina K. Plowright, and James L.N. Wood
Author affiliations: US Geological Survey, Fort Collins, Colorado, USA (T.J. O’Shea, P.M. Cryan); Zoological Society of London, London, UK (A.A. Cunningham); Animal Health and Veterinary Laboratories Agency—Weybridge, Weybridge, UK (A.R. Fooks); National Consortium for Zoonosis Research, South Wirral, UK (A.R. Fooks); Colorado State University, Fort Collins, Colorado, USA (D.T.S. Hayman, A.D. Luis); University of Florida, Gainesville, Florida, USA (D.T.S. Hayman); Fogarty International Center of the National Institutes of Health, Bethesda, Maryland, USA (A.D. Luis); University of Cambridge, Cambridge, UK (A.J. Peel, J.L.N. Wood); Griffith University, Brisbane, Queensland, Australia (A.J. Peel); Pennsylvania State University, University Park, Pennsylvania, USA (R.K. Plowright)

Main Article

Table 1

Examples of elevated core body temperature in flying bats*

Bat species (family) Core temperature during flight, °C Source
Eidolon helvum (Pteropidae) 36.9–40.8 (23)
Hypsignathus monstrosus (Pteropidae) 37.2–40.0 (23)
Rousettus aegyptiacus (Pteropidae) 38.2–41.2 (23)
Rhinolophus ferrumequinum (Rhinolophidae) 41† (24)
Miniopterus sp. (Miniopteridae) 41.1 ± 0.45 (25)
Phyllostomus hastatus (Phyllostomidae) 41.2–42.1 (17)
Carollia perspicillata (Phyllostomidae) 40.2 ± 0.8 (26)
Artibeus lituratus (Phyllostomidae) c. 41.2 ± 1 (27)
Sturnira lilium (Phyllostomidae) c. 40.5 ± 0.3 (27)
Noctilio albiventris (Noctilionidae) 35.5–40.6 (28)
Myotis yumanensis (Vespertilionidae) 40.0–40.8 (29)
Eptesicus fuscus (Vespertilionidae) 41.3 ± 2.1†, 37–39.5‡ (30)
Mops condylurus (Molossidae) 40.5 ± 1.1 (31)
Tadarida brasiliensis (Molossidae) 35–42 (32)
Eumops perotis (Molossidae) 37.8–39.3 (33)
Myotis volans (Vespertilionidae) 37.4 (34)
Myotis evotis (Vespertilionidae) 38.3 (34)
Myotis californicus (Vespertilionidae) 38.4 (34)
Parastrellus Hesperus (Vespertilionidae) 38.8 (34)
Eptesicus fuscus (Vespertilionidae) 41.0 (34)
Lasiurus cinereus (Vespertilionidae) 40.2 (34)
Antrozous pallidus (Vespertilionidae) 40.6 (34)
Tadarida brasiliensis (Molossidae) 38.0 (34)

*Data available from original sources are given as ranges or means ±1 SD.
†Skin temperature.
‡Body temperature.

Main Article

References
  1. Calisher  CH, Childs  JE, Field  HE, Holmes  KV, Schountz  T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006;19:53145 . DOIPubMedGoogle Scholar
  2. Dobson  AP. What links bats to emerging infectious diseases? Science. 2005;310:6289. DOIPubMedGoogle Scholar
  3. Luis  AD, Hayman  DTS, O’Shea  TJ, Cryan  PM, Gilbert  AT, Pulliam  JRC, A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc Royal Soc B Biol Sci. 2013;280:20122753.
  4. Ge  XY, Li  JL, Yang  XL, Chmura  AA, Zhu  G, Epstein  JH, Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:5358. DOIPubMedGoogle Scholar
  5. Leroy  EM, Kumulungui  B, Pourrut  X, Rouquet  P, Hassanin  A, Yaba  P, Fruit bats as reservoirs of Ebola virus. Nature. 2005;438:5756. DOIPubMedGoogle Scholar
  6. Towner  JS, Amman  BR, Sealy  TK, Carroll  SA, Comer  JA, Kemp  A, Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009;5:e1000536. DOIPubMedGoogle Scholar
  7. Halpin  K, Young  PL, Field  HE, Mackenzie  JS. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J Gen Virol. 2000;81:192732 .PubMedGoogle Scholar
  8. Chua  KB, Koh  CL, Hooi  PS, Wee  KF, Khong  JH, Chua  BH, Isolation of Nipah virus from Malaysian Island flying foxes. Microbes Infect. 2002;4:14551. DOIPubMedGoogle Scholar
  9. Drexler  JF, Corman  VM, Müller  MA, Maganga  GD, Vallo  P, Binger  T, Bats host major mammalian paramyxoviruses. Nat Commun. 2012;3:796.
  10. Baker  ML, Schountz  T, Wang  LF. Antiviral immune responses of bats: a review. Zoonoses Public Health. 2013;60:10416. DOIPubMedGoogle Scholar
  11. Wang  LF, Walker  PJ, Poon  LLM. Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’ as reservoirs for emerging viruses? Curr Opin Virol. 2011;1:649–57.
  12. Sohayati  AR, Hassan  L, Sharifah  SH, Lazarus  K, Zaini  CM, Epstein  JH, Evidence for Nipah virus recrudescence and serological patterns of captive Pteropus vampyrus. Epidemiol Infect. 2011;139:15709. DOIPubMedGoogle Scholar
  13. Zhang  G, Cowled  C, Shi  Z, Huang  Z, Bishop-Lilly  KA, Fang  X, Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science. 2013;339:45660. DOIPubMedGoogle Scholar
  14. Blatteis  CM. Fever: pathological or physiological, injurious or beneficial? J Therm Biol. 2003;28:113. DOIGoogle Scholar
  15. Hasday  JD, Fairchild  KD, Shanholtz  C. The role of fever in the infected host. Microbes Infect. 2000;2:1891904. DOIPubMedGoogle Scholar
  16. Speakman  JR, Thomas  DW. Physiological ecology and energetics of bats. In: Kunz TH, Fenton MB, editors. Bat ecology. Chicago: University of Chicago Press; 2003. p. 430–90.
  17. Thomas  SP, Suthers  RA. The physiology and energetics of bat flight. J Exp Biol. 1972;57:31735.
  18. Bundle  MW, Hansen  KS, Dial  KP. Does the metabolic rate–flight speed relationship vary among geometrically similar birds of different mass? J Exp Biol. 2007;210:107583. DOIPubMedGoogle Scholar
  19. Książek  A, Konarzewski  M. Effect of dietary restriction on immune response of laboratory mice divergently selected for basal metabolic rate. Physiol Biochem Zool. 2012;85:5161. DOIPubMedGoogle Scholar
  20. Cutrera  AP, Zenuto  RR, Luna  F, Antenucci  CD. Mounting a specific immune response increases energy expenditure of the subterranean rodent Ctenomys talarum (tuco-tuco): implications for intraspecific and interspecific variation in immunological traits. J Exp Biol. 2010;213:71524. DOIPubMedGoogle Scholar
  21. Martin  LB, Weil  ZM, Nelson  RJ. Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos Trans R Soc Lond B Biol Sci. 2008;363:32139. DOIPubMedGoogle Scholar
  22. Canale  CI, Henry  PY. Energetic costs of the immune response and torpor use in a primate. Funct Ecol. 2011;25:55765. DOIGoogle Scholar
  23. Carpenter  RE. Flight physiology of intermediate-sized fruit bats (Pteropodidae). J Exp Biol. 1986;120:79103.
  24. Burbank  RC, Young  JZ. Temperature changes and winter sleep of bats. J Physiol. 1934;82:45967 .PubMedGoogle Scholar
  25. Morrison  P. Body temperatures in some Australian mammals. I. Chiroptera. Biol Bull. 1959;116:48497. DOIGoogle Scholar
  26. Voigt  CC, Lewanzik  D. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proc Biol Sci. 2011;278:23117. DOIPubMedGoogle Scholar
  27. Morrison  P, McNab  BK. Temperature regulation in some Brazilian phyllostomid bats. Comp Biochem Physiol. 1967;21:20721. DOIPubMedGoogle Scholar
  28. Roverud  RC, Chappell  MA. Energetic and thermoregulatory aspects of clustering behavior in the neotropical bat Noctilio albiventris. Physiol Zool. 1991;64:152741.
  29. Reeder  WG, Cowles  RB. Aspects of thermoregulation in bats. J Mammal. 1951;32:389403. DOIGoogle Scholar
  30. Willis  CKR, Brigham  RM. Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature. J Comp Physiol B. 2003;173:37989. DOIPubMedGoogle Scholar
  31. Bronner  GN, Maloney  SK, Buffenstein  R. Survival tactics within thermally-challenging roosts: heat tolerance and cold sensitivity in the Angolan free-tailed bat, Mops condylurus. S Afr J Zool. 1999;34:110.
  32. Herreid  CF II. Temperature regulation and metabolism in Mexican freetail bats. Science. 1963;142:15734. DOIPubMedGoogle Scholar
  33. Leitner  P. Body temperature, oxygen consumption, heart rate and shivering in the California mastiff bat, Eumops perotis. Comp Biochem Physiol. 1966;19:43143. DOIGoogle Scholar
  34. O’Farrell  MJ, Bradley  WG. Comparative thermal relationships of flight for some bats in southwestern United States. Comp Biochem Physiol A. 1977;58:2237. DOIGoogle Scholar
  35. Thomas  DW. The physiological ecology of hibernation in vespertilionid bats. In: Racey PA, Swift, SM, editors. Ecology, evolution, and behaviour of bats. Oxford (UK): Clarendon Press; 1995. p. 233–44.
  36. Long  GH, Boots  M. How can immunopathology shape the evolution of parasite virulence? Trends Parasitol. 2011;27:3005. DOIPubMedGoogle Scholar
  37. Meteyer  CU, Barber  D, Mandl  JN. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome. Virulence. 2012;3:5838. DOIPubMedGoogle Scholar
  38. Graham  AL, Allen  JE, Read  AF. Evolutionary causes and consequences of immunopathology. Annu Rev Ecol Evol Syst. 2005;36:37397. DOIGoogle Scholar
  39. Clark  DW Jr. Bats and environmental contaminants: a review. US Fish and Wildlife Service Special Scientific Report—Wildlife 1981; 235:1–27.
  40. LeGrand  EK, Alcock  J. Turning up the heat: immune brinksmanship in the acute-phase response. Q Rev Biol. 2012;87:318. DOIPubMedGoogle Scholar

Main Article

Page created: April 16, 2014
Page updated: April 16, 2014
Page reviewed: April 16, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external