Volume 21, Number 1—January 2015
Synopsis
Health Care Response to CCHF in US Soldier and Nosocomial Transmission to Health Care Providers, Germany, 2009
Table 3
Group no. | No persons | Risk | PEP and monitoring |
---|---|---|---|
1 |
18 |
Contact of skin or mucous membranes with contaminated blood or body fluids; present during bronchoscopy or during use of bag-valve-mask ventilation device (risk of aerosolization of infectious blood/body fluids likely) and without proper PPE† |
Oral ribavirin PEP offered; baseline and at least weekly chemistries and CBC; CCHF acute/convalescentphase titers‡; monitoring for fever (twice daily) and for CCHF symptoms and medication side effects (for 15 d in clinic) |
2 |
31 |
Present during bronchoscopy or during use of bag-valve-mask ventilation device (even with proper PPE)†; known contact with contaminated blood or body fluids but wore proper PPE and without PPE breaches† (no known mucosal or skin contact with infectious blood/body fluids); laboratory workers who performed tests on specimens (removed specimens from container) and wore proper PPE† |
Monitoring for fever twice daily for 15 d (in clinic); self-observation and reporting of signs or symptoms e.g., fever) for 15 d |
3 | 41 | Persons in patient’s room who wore proper PPE and without PPE breaches and no contact with infectious blood/body fluids†; laboratory workers who handled laboratory specimens (but did not remove specimens from container) and wore proper PPE† | No active monitoring; self-observation and reporting of signs or symptoms (e.g., fever) for 15 d |
*CBC, complete blood count; CCHF, Crimean–Congo hemorrhagic fever; PEP, postexposure prophylaxis; PPE, personal protective equipment.
†Proper PPE for aerosol exposure included gown, gloves, N95 respirator, and protective eyewear; powered air-purifying respirators and full biohazard suits were required during bronchoscopies and chest tube placements by physician performing the procedure.
‡ELISA for CCHF-specific IgM and IgG performed at the Centers for Disease Control and Prevention, Atlanta, Georgia, USA (11).
References
- Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA. Crimean–Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100:159–89. DOIPubMedGoogle Scholar
- Erby A. Crimean–Congo hemorrhagic fever virus. In: Dongyou Liu, editor. Manual of security sensitive microbes and toxins. Boca Raton (FL): CRC Press; 2014. p. 37–52.
- Rusnak JM. Experience with ribavirin for treatment and postexposure prophylaxis of hemorrhagic fever viruses: Crimean Congo hemorrhagic fever, Lassa fever, and hantavirus [cited 2014 Sep 15]. http://www.absa.org/abj/abj/111602Rusnak.pdf
- Swanepoel R, Gill DE, Shepherd AJ, Leman PA, Mynhardt JH, Harvey S. The clinical pathology of Crimean–Congo hemorrhagic fever. Rev Infect Dis. 1989;11:S794–800. DOIPubMedGoogle Scholar
- Karti SS, Odabasi Z, Korten V, Yilmaz M, Sonmez M, Caylan R, Crimean–Congo hemorrhagic fever in Turkey. Emerg Infect Dis. 2004;10:1379–84. DOIPubMedGoogle Scholar
- Wölfel R, Paweska JT, Petersen N, Grobbelaar AA, Leman PA, Hewson R, Virus detection and monitoring of viral load in Crimean–Congo hemorrhagic fever virus patients. Emerg Infect Dis. 2007;13:1097–100. DOIPubMedGoogle Scholar
- Lambert AJ, Lanciotti RS. Consensus amplification and novel multiplex sequencing method for S segment species identification of 47 viruses of the Orthobunyavirus, Phlebovirus, and Nairovirus genera of the family Bunyaviridae. J Clin Microbiol. 2009;47:2398–404. DOIPubMedGoogle Scholar
- Olschläger S, Gabriel M, Schmidt-Chanasit J, Meyer M, Osborn E, Conger NG, Complete sequence and phylogenetic characterisation of Crimean-Congo hemorrhagic fever virus from Afghanistan. J Clin Virol. 2011;50:90–2. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention (CDC). Interim guidance for managing patients with suspected viral hemorrhagic fever in US Hospitals; 2005 19 May [cited 2014 Sept 11]. http://www.cdc.gov/HAI/pdfs/bbp/VHFinterimGuidance05_19_05.pdf.
- World Health Organization. Application for inclusion of ribavirin in the WHO model list of essential medicines [2010 Sep 15]. http://archives.who.int/eml/expcom/expcom15/applications/newmed/ribaravin/ribavirin.pdf
- Khan AS, Maupin GO, Rollin PE, Noor AM, Shurie HHM, Shalabi AGA, An outbreak of Crimean–Congo hemorrhagic fever in the United Arab Emirates, 1994–1995. Am J Trop Med Hyg. 1997;57:519–25 .PubMedGoogle Scholar
- Burney MI, Ghafoor A, Saleen M, Webb PA, Casals J. Nosocomial outbreak of viral hemorrhagic fever caused by Crimean hemorrhagic fever–Congo virus in Pakistan, January 1976. Am J Trop Med Hyg. 1980;29:941–7 .PubMedGoogle Scholar
- Amorosa V, MacNeil A, McConnell R, Patel A, Dillon KE, Hamilton K, Imported Lassa fever, Pennsylvania, USA, 2010. Emerg Infect Dis. 2010;16:1598–600. DOIPubMedGoogle Scholar
- Jauréguiberry S, Tattevin P, Tarantola A, Legay F, Tall A, Nabeth P, Imported Crimean–Congo hemorrhagic fever. J Clin Microbiol. 2005;43:4905–7. DOIPubMedGoogle Scholar
- Barry M, Russi M, Armstrong L, Geller D, Tesh R, Dembry L, Treatment of a laboratory-acquired Sabia virus infection. N Engl J Med. 1995;333:294–6. DOIPubMedGoogle Scholar
- Timen A, Koopmans MP, Vossen AC, van Doornum GJ, Gunther S, van den Berkmortel F, Response to imported case of Marburg hemorrhagic fever, the Netherlands. Emerg Infect Dis. 2009;15:1171–5. DOIPubMedGoogle Scholar
- World Health Organization. Global alert and response (GAR). Ebola virus disease, West – update. 2014 Jul 27[cited 4 Aug 2014]. http://www.who.int/csr/don/2014_07_27_ebola/en/
- Bhagat CI, Lewer M, Prins A, Beilby JP. Effects of heating plasma at 56 degrees C for 30 min and at 60 degrees C for 60 min on routine biochemistry analytes. Ann Clin Biochem. 2000;37:802–4. DOIPubMedGoogle Scholar
- Bodur H, Akinci E, Onguru P, Carhan A, Uyar Y, Tanrici A, Detection of Crimean–Congo hemorrhagic fever virus genome in saliva and urine. Int J Infect Dis. 2010;14:e247–9. DOIPubMedGoogle Scholar
- Thomas S, Thomson G, Dowall S, Bruce C, Cook N, Easterbrook L, Review of Crimean Congo hemorrhagic fever infection in Kosova in 2008 and 2009: prolonged viremias and virus detected in urine by PCR. Vector Borne Zoonotic Dis. 2012;12:800–4. DOIPubMedGoogle Scholar
- Keshtkar-Jahromi M, Sajadi MM, Ansari H, Mardani M, Holakouie-Naieni K. Crimean–Congo hemorrhagic fever in Iran. Antiviral Res. 2013;100:20–8. DOIPubMedGoogle Scholar
- Bodur H, Akinci E, Ascioglu S, Onguru P, Uyar Y. Subclinical infection with Crimean–Congo hemorrhagic fever virus, Turkey. Emerg Infect Dis. 2012;18:640–2. DOIPubMedGoogle Scholar
- Ozturk B, Tutuncu E, Kuscu F, Gurbuz Y, Sencan I, Tuzun H. Evaluation of factors predictive of the prognosis in Crimean–Congo hemorrhagic fever: new suggestions. Int J Infect Dis. 2012;16:e89–93. DOIPubMedGoogle Scholar
- Hatipoglu CA, Bulut C, Yetkin MA, Ertem GT, Erdinc FS, Kilic EI, Evaluation of clinical and laboratory predictors of fatality in patients with Crimean–Congo haemorrhagic fever in a tertiary care hospital in Turkey. Scand J Infect Dis. 2010;42:516–21. DOIPubMedGoogle Scholar
- Çevik MA, Erbay A, Bodur H, Gulderen E, Bastug A, Kubar A, Clinical and laboratory features of Crimean–Congo hemorrhagic fever: predictors of fatality. Int J Infect Dis. 2008;12:374–9. DOIPubMedGoogle Scholar
- Ozbey SB, Kader C, Erbay A, Ergonul O. Early use of ribavirin is beneficial in Crimean–Congo hemorrhagic fever. Vector Borne Zoonotic Dis. 2014;14:300–2. DOIPubMedGoogle Scholar
- Onguru P, Dagdas S, Bodur H, Yilmaz M, Akinci E, Eren S, Coagulopathy parameters in patients with Crimean–Congo hemorrhagic fever and its relation with mortality. J Clin Lab Anal. 2010;24:163–6. DOIPubMedGoogle Scholar
- Saksida A, Duh D, Wraber B, Dedushaj I, Ahmeti S, Avsic-Zupanc T. Interacting roles of immune mechanisms and viral load in the pathogenesis of Crimean–Congo hemorrhagic fever. Clin Vaccine Immunol. 2010;17:1086–93. DOIPubMedGoogle Scholar
- Connolly-Andersen AM, Moll G, Andersson C, Akerström S, Karlberg H, Douagi I, Crimean–Congo hemorrhagic fever virus activates endothelial cells. J Virol. 2011;85:7766–74. DOIPubMedGoogle Scholar
- Weber F, Mirazimi A. Interferon and cytokine responses to Crimean Congo hemorrhagic fever virus; an emerging and neglected viral zoonosis. Cytokine Growth Factor Rev. 2008;19:395–404. DOIPubMedGoogle Scholar
- Ergonul O, Tuncbilek S, Baykam N, Celikbas A, Dokuzoguz B. Evaluation of serum levels of interleukin (IL)-6, IL-10 and tumor necrosis factor-α in patients with Crimean–Congo hemorrhagic fever. J Infect Dis. 2006;193:941–4. DOIPubMedGoogle Scholar
- Papa A, Bino S, Velo E, Harxhi A, Kota M, Antoniadis A. Cytokine levels in Crimean–Congo hemorrhagic fever. J Clin Virol. 2006;36:272–6. DOIPubMedGoogle Scholar
- Ozturk B, Kuscu F, Tutuncu E, Sencan I, Gurbuz Y, Tuzan H. Evaluation of the association of serum levels of hyaluronic acid, sICAM-1, sVCAM-1, and VEGF-A with mortality and prognosis in patients with Crimean–Congo hemorrhagic fever. J Clin Virol. 2010;47:115–9. DOIPubMedGoogle Scholar
- Peyrefitte CN, Perret M, Garcia S, Rodriguez R, Bagnaud A, Lacote S, Differential activation profiles of Crimean–Congo hemorrhagic fever virus– and Dugbe virus–infected antigen-presenting cells. J Gen Virol. 2010;91:189–98. DOIPubMedGoogle Scholar
- Bodur H, Akinci E, Onguru P, Uyar Y, Basturk B, Gozel MG, Evidence of vascular endothelial damage in Crimean–Congo hemorrhagic fever. Int J Infect Dis. 2010;14:e704–7. DOIPubMedGoogle Scholar
- Bakir M, Bakir S, Sari I, Celik VK, Gozel MG, Engin A. Evaluation of the relationship between serum levels of VEGF and sVEGFR1 with mortality and prognosis in patients with Crimean–Congo hemorrhagic fever. J Med Virol. 2013;85:1794–801. DOIPubMedGoogle Scholar
- van Paassen J, Bauer MP, Arbous MS, Visser LG, Schmidt-Chanasit J, Schilling S, Acute liver failure, multiorgan failure, cerebral oedema, and activation of proangiogenic and antiangiogenic factors in a case of Marburg haemorrhagic fever. Lancet Infect Dis. 2012;12:635–42. DOIPubMedGoogle Scholar
- Andersson I, Lundkvist A, Haller O, Mirazimi A. Type I interferon inhibits Crimean–Congo hemorrhagic fever virus in human target cells. J Med Virol. 2006;78:216–22. DOIPubMedGoogle Scholar
- Andersson I, Karlberg H, Mousari-Jazi M, Martinez-Sobrido L, Wever F, Mirazimi A. Crimean–Congo hemorrhagic fever virus delays activation of the innate immune response. J Med Virol. 2008;80:1397–404. DOIPubMedGoogle Scholar
- Oestereich L, Rieger T, Neumann M, Bernreuther C, Lehmann M, Krasemann S, Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in a mouse model for Crimean–Congo hemorrhagic fever. PLoS Negl Trop Dis. 2014;8:e2804. DOIPubMedGoogle Scholar
1Preliminary results from this study were presented at the Annual Meeting of the Armed Forces Infectious Disease Society; May 23, 2010, San Antonio, Texas, USA; NATO Biomedical Advisory; May 27, 2010, Munich, Germany; and Asian Pacific Military Medicine Conference, May 3, 2011, Sydney, New South Wales, Australia.