Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 1—January 2016
Research

Human Papillomavirus Vaccination at a Time of Changing Sexual Behavior

Iacopo BaussanoComments to Author , Fulvio Lazzarato, Marc Brisson, and Silvia Franceschi
Author affiliations: International Agency for Research on Cancer, Lyon, France (I. Baussano, F. Lazzarato, S. Franceschi); University of Turin, Turin, Italy (F. Lazzarato); University of Piemonte Orientale Avogadro, Novara, Italy (F. Lazzarato); Centre de Recherche du Centre Hospitalier Universitaire, Québec City, Québec, Canada (M. Brisson); Université Laval, Québec City (M. Brisson); Imperial College, London, UK (M. Brisson)

Main Article

Table

Model parameters related to HPV16 infection, sexual behavior, and vaccine efficacy and values assigned or calibrated*

Parameter Value Source
Probability of transmission per sexual partnership, % 80 Assumed
Fraction of immunity after infection clearance, %
20
Assumed
Rate of clearance by duration since infection, person-year Assumed
<1 y 1.3
1–2 y 0.8
>2 y
0.3

New sexual partners per year, mean
Heterosexual population with traditional sexual behavior 2.0 Calibrated
Heterosexual population with gender-similar sexual behavior 1.5 Calibrated
Heterosexual population with gender-similar sexual behavior with increased number of partners 2.0† SA
Heterosexual population with traditional sexual behavior with decreased number of partners
1.5‡
SA
Mixing between classes of sexual activity§ 0.7 Calibrated

0.3
SA
Vaccination efficacy 95% Assumed
Duration of vaccine protection Lifelong Assumed

*Values have been assumed on the basis of previous research (7). We calibrated values by fitting model-based projections to data from rural India (19) and the United States (20). SA indicates that the value was imposed on the model for univariate sensitivity analysis.
† We increased the average number of partners from 1.5, the calibrated value, to 2.0 in the population with gender-similar sexual behavior.
‡ We decreased the average number of partners from 2.0, the calibrated value, to 1.5 in the population with traditional behavior.
§”Mixing between classes of sexual activity” is a measure of the tendency for persons with similar levels of sexual activity to form sexual partnerships. It is measured on a scale where fully and randomly assortative (i.e., like-with-like) mixing corresponds to values 0 and 1, respectively. For the sensitivity analysis, we changed the value of assortative mixing by level of sexual activity from 0.7, the calibrated value, to 0.3.

Main Article

References
  1. Tucker  JD, Chen  XS, Peeling  RW. Syphilis and social upheaval in China. N Engl J Med. 2010;362:165861. DOIPubMedGoogle Scholar
  2. Chen  ZQ, Zhang  GC, Gong  XD, Lin  C, Gao  X, Liang  GJ, Syphilis in China: results of a national surveillance programme. Lancet. 2007;369:1328. DOIPubMedGoogle Scholar
  3. Wellings  K, Collumbien  M, Slaymaker  E, Singh  S, Hodges  Z, Patel  D, Sexual behaviour in context: a global perspective. Lancet. 2006;368:170628. DOIPubMedGoogle Scholar
  4. Mercer  CH, Tanton  C, Prah  P, Erens  B, Sonnenberg  P, Clifton  S, Changes in sexual attitudes and lifestyles in Britain through the life course and over time: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet. 2013;382:178194. DOIPubMedGoogle Scholar
  5. Gregson  S, Nyamukapa  CA, Garnett  GP, Mason  PR, Zhuwau  T, Carael  M, Sexual mixing patterns and sex-differentials in teenage exposure to HIV infection in rural Zimbabwe. Lancet. 2002;359:1896903. DOIPubMedGoogle Scholar
  6. Franceschi  S, Herrero  R, Clifford  GM, Snijders  PJ, Arslan  A, Anh  PT, ; IARC HPV Prevalence Surveys Study Group. Variations in the age-specific curves of human papillomavirus prevalence in women worldwide. Int J Cancer. 2006;119:267784. DOIPubMedGoogle Scholar
  7. Baussano  I, Elfstrom  KM, Lazzarato  F, Gillio-Tos  A, De Marco  L, Carozzi  F, Type-specific human papillomavirus biological features: validated model-based estimates. PLoS ONE. 2013;8:e81171. DOIPubMedGoogle Scholar
  8. Guan  P, Howell-Jones  R, Li  N, Bruni  L, de Sanjosé  S, Franceschi  S, Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int J Cancer. 2012;131:234959. DOIPubMedGoogle Scholar
  9. Lopman  B, Nyamukapa  C, Mushati  P, Mupambireyi  Z, Mason  P, Garnett  GP, HIV incidence in 3 years of follow-up of a Zimbabwe cohort—1998–2000 to 2001–03: contributions of proximate and underlying determinants to transmission. Int J Epidemiol. 2008;37:88105. DOIPubMedGoogle Scholar
  10. Baggaley  RF, Garnett  GP, Ferguson  NM. Modelling the impact of antiretroviral use in resource-poor settings. PLoS Med. 2006;3:e124. DOIPubMedGoogle Scholar
  11. Garnett  GP, Anderson  RM. Balancing sexual partnerships in an age and activity stratified model of HIV transmission in heterosexual populations. IMA J Math Appl Med Biol. 1994;11:16192. DOIPubMedGoogle Scholar
  12. Vänskä  S, Auranen  K, Leino  T, Salo  H, Nieminen  P, Kilpi  T, Impact of vaccination on 14 high-risk HPV type infections: a mathematical modelling approach. PLoS ONE. 2013;8:e72088. DOIPubMedGoogle Scholar
  13. Johnson  HC, Elfstrom  KM, Edmunds  WJ. Inference of type-specific HPV transmissibility, progression and clearance rates: a mathematical modelling approach. PLoS ONE. 2012;7:e49614. DOIPubMedGoogle Scholar
  14. Barnabas  RV, Laukkanen  P, Koskela  P, Kontula  O, Lehtinen  M, Garnett  GP. Epidemiology of HPV 16 and cervical cancer in Finland and the potential impact of vaccination: mathematical modelling analyses. PLoS Med. 2006;3:e138. DOIPubMedGoogle Scholar
  15. Van de Velde  N, Brisson  M, Boily  MC. Understanding differences in predictions of HPV vaccine effectiveness: a comparative model-based analysis. Vaccine. 2010;28:547384. DOIPubMedGoogle Scholar
  16. Hertog  S. Heterosexual behavior patterns and the spread of HIV/AIDS: the interacting effects of rate of partner change and sexual mixing. Sex Transm Dis. 2007;34:8208.PubMedGoogle Scholar
  17. Demographic and Health Survey Program. India: standard DHS, 2005–06. Rockville (MD): The Program; 2006 [cited 2014 Jul 10]. http://dhsprogram.com/data/dataset/India_Standard-DHS_2006.cfm?flag=0
  18. Vespa  J, Lewis  JM, Kreider  RM. America’s families and living arrangements: 2012. Washington, DC: US Census Bureau; Aug 2013. p. 22–23 [cited 2014 Jul 10]. http://www.census.gov/prod/2013pubs/p20-570.pdf
  19. Franceschi  S, Rajkumar  R, Snijders  PJF, Arslan  A, Mahé  C, Plummer  M, Papillomavirus infection in rural women in southern India. Br J Cancer. 2005;92:6016.PubMedGoogle Scholar
  20. Dunne  EF, Sternberg  M, Markowitz  LE, McQuillan  G, Swan  D, Patel  S, Human papillomavirus (HPV) 6, 11, 16, and 18 prevalence among females in the United States—National Health And Nutrition Examination Survey, 2003–2006: opportunity to measure HPV vaccine impact? J Infect Dis. 2011;204:5625. DOIPubMedGoogle Scholar
  21. Franceschi  S, Baussano  I. Naturally acquired immunity against human papillomavirus (HPV): why it matters in the HPV vaccine era. J Infect Dis. 2014;210:5079. DOIPubMedGoogle Scholar
  22. Franceschi  S, Denny  L, Irwin  KL, Jeronimo  J, Lopalco  PL, Monsonego  J, Eurogin 2010 roadmap on cervical cancer prevention. Int J Cancer. 2011;128:276574. DOIPubMedGoogle Scholar
  23. Garnett  GP. An introduction to mathematical models in sexually transmitted disease epidemiology. Sex Transm Infect. 2002;78:712. DOIPubMedGoogle Scholar
  24. Baussano  I, Garnett  G, Segnan  N, Ronco  G, Vineis  P. Modelling patterns of clearance of HPV-16 infection and vaccination efficacy. Vaccine. 2011;29:12707. DOIPubMedGoogle Scholar
  25. Garnett  GP. Role of herd immunity in determining the effect of vaccines against sexually transmitted disease. J Infect Dis. 2005;191(Suppl 1):S97106. DOIPubMedGoogle Scholar
  26. Ronco  G, Giorgi-Rossi  P, Carozzi  F, Confortini  M, Dalla Palma  P, Del Mistro  A, Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol. 2010;11:24957. DOIPubMedGoogle Scholar
  27. Soderlund-Strand  A, Dillner  J. High-throughput monitoring of human papillomavirus type distribution. Cancer Epidemiol Biomarkers Prev. 2013;22:24250. DOIPubMedGoogle Scholar
  28. Liljeros  F, Edling  CR, Nunes Amaral  LA. Sexual networks: implications for the transmission of sexually transmitted infections. Microbes Infect. 2003;5:18996. DOIPubMedGoogle Scholar
  29. Widdice  LE, Breland  DJ, Jonte  J, Farhat  S, Ma  Y, Leonard  AC, Human papillomavirus concordance in heterosexual couples. J Adolesc Health. 2010;47:1519. DOIPubMedGoogle Scholar
  30. Kim  JJ, Andres-Beck  B, Goldie  SJ. The value of including boys in an HPV vaccination programme: a cost-effectiveness analysis in a low-resource setting. Br J Cancer. 2007;97:13228. DOIPubMedGoogle Scholar
  31. Gravitt  PE, Rositch  AF, Silver  MI, Marks  MA, Chang  K, Burke  AE, A cohort effect of the sexual revolution may be masking an increase in human papillomavirus detection at menopause in the United States. J Infect Dis. 2013;207:27280. DOIPubMedGoogle Scholar

Main Article

Page created: December 18, 2015
Page updated: December 18, 2015
Page reviewed: December 18, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external