Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 3—March 2016
Dispatch

Far East Scarlet-Like Fever Caused by a Few Related Genotypes of Yersinia pseudotuberculosis, Russia

Nelly F. Timchenko1, Ruslan R. Adgamov, Alexander F. Popov, Ekaterina K. Psareva, Konstantin A. Sobyanin, Alexander L. Gintsburg, and Svetlana A. Ermolaeva1Comments to Author 
Author affiliations: Institute of Epidemiology and Microbiology named after G.P. Somov, Vladivostok, Russia (N.F. Timchenko, E.K. Psareva); Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia (R.R. Adgamov, K.A. Sobyanin, A.L. Gintsburg, S.A. Ermolaeva); Paсific State Medical University, Vladivostok (A.F. Popov); Pirogov Russian National Research Medical University, Moscow (S.A. Ermolaeva)

Main Article

Figure 2

Graphic representation of the evolutionary analysis that tested the hypothesis of equality of evolutionary rates between multivirulence locus sequence type (MVLST) genotypes for study of Far East scarlet-like fever caused by a clonal group of Yersinia pseudotuberculosis, Russia. The χ2 test statistic was applied for the pairwise comparison of concatenated sequences of MVLST markers, with the Y. pestis sequence being used as an outgroup. Circles indicate values of the χ2 test statistic of the pai

Figure 2. Graphic representation of the evolutionary analysis that tested the hypothesis of equality of evolutionary rates between multivirulence locus sequence type (MVLST) genotypes for study of Far East scarlet-like fever caused by a clonal group of Yersinia pseudotuberculosis, Russia. The χ2 test statistic was applied for the pairwise comparison of concatenated sequences of MVLST markers, with the Y. pestis sequence being used as an outgroup. Circles indicate values of the χ2 test statistic of the pairwise comparison calculated in MEGA6 (10); diameters correspond to values of rejection of the null hypothesis that states the equality of evolutionary rates between pairs of concatenated sequences. Statistically significant values are shown in red.

Main Article

References
  1. Grunin  II, Somov  GP, Zalmover  IIu. Far Eastern scarlatinoid fever [in Russian]. Voen Med Zh. 1960;8:626.PubMedGoogle Scholar
  2. Fukushima  H, Matsuda  Y, Seki  R, Tsubokura  M, Takeda  N, Shubin  FN, Geographical heterogeneity between far eastern and western countries in prevalence of the virulence plasmid, the superantigen Yersinia pseudotuberculosis-derived mitogen, and the high-pathogenicity island among Yersinia pseudotuberculosis strains. J Clin Microbiol. 2001;39:35417. DOIPubMedGoogle Scholar
  3. Eppinger  M, Rosovitz  MJ, Fricke  WF, Rasko  DA, Kokorina  G, Fayolle  C, The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet. 2007;3:e142. DOIPubMedGoogle Scholar
  4. Somov  G. Far-East scarlet-like fever. Moscow: Medicine; 1979.
  5. Laukkanen-Ninios  R, Didelot  X, Jolley  KA, Morelli  G, Sangal  V, Kristo  P, Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing. Environ Microbiol. 2011;13:311427. DOIPubMedGoogle Scholar
  6. Eitel  J, Dersch  P. The YadA protein of Yersinia pseudotuberculosis mediates high-efficiency uptake into human cells under environmental conditions in which invasin is repressed. Infect Immun. 2002;70:488091. DOIPubMedGoogle Scholar
  7. Isberg  RR, Voorhis  DL, Falkow  S. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell. 1987;50:76978. DOIPubMedGoogle Scholar
  8. Hoffmann  C, Pop  M, Leemhuis  J, Schirmer  J, Aktories  K, Schmidt  G. The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J Biol Chem. 2004;279:1602632. DOIPubMedGoogle Scholar
  9. Wang  X, Parashar  K, Sitaram  A, Bliska  JB. The GAP activity of type III effector YopE triggers killing of Yersinia in macrophages. PLoS Pathog. 2014;10:e1004346. DOIPubMedGoogle Scholar
  10. Tamura  K, Stecher  G, Peterson  D, Filipski  A, Kumar  S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:27259. DOIPubMedGoogle Scholar
  11. Librado  P, Rozas  J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:14512. DOIPubMedGoogle Scholar
  12. Portnoy  DA, Martinez  RJ. Role of a plasmid in the pathogenicity of Yersinia species. Curr Top Microbiol Immunol. 1985;118:2951. DOIPubMedGoogle Scholar
  13. Shubin  FN, Gintsburg  AL, Kitaev  VM, Ianishevskiĭ  NV, Zenkova  ZG. Analysis of the plasmid composition of Yersinia pseudotuberculosis strains and its use for typing pseudotuberculosis pathogens. Mol Gen Mikrobiol Virusol. 1989;6:205.PubMedGoogle Scholar
  14. Achtman  M, Zurth  K, Morelli  G, Torrea  G, Guiyoule  A, Carniel  E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 1999;96:140438. DOIPubMedGoogle Scholar
  15. Wren  BW. The Yersiniae—a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol. 2003;1:5564. DOIPubMedGoogle Scholar

Main Article

1These authors were co–principal investigators.

Page created: February 18, 2016
Page updated: February 18, 2016
Page reviewed: February 18, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external